

Luciralia Ibarra < luciralia.ibarra@lacity.org>

8150 Sunset: Golder Response to 6.29.15 LADBS Geology and Soils Report **Correction Letter**

Nytzen, Michael <michaelnytzen@paulhastings.com> To: Luci lbarra < luciralia.ibarra@lacity.org>

Fri, Sep 25, 2015 at 10:44 AM

Good morning. Attached is a copy of Golder Associates' response to the 6.29.15 LADBS Geology and Soils Report Correction Letter, which was submitted to LADBS today. Please post this on the 8150 Sunset Boulevard Web site.

Thanks	you for	your	attention	to thi	s, and	l please	let r	me know	if you	have a	any	questions.
--------	---------	------	-----------	--------	--------	----------	-------	---------	--------	--------	-----	------------

Thanks,

Michael

E. Michael Nytzen | Senior Land Use Project Manager Paul Hastings LLP | 515 South Flower Street, Twenty-Sixth Floor, Los Angeles, CA 90071 | Direct: +1.213.683.5713 | Main: +1.213.683.6000 | HASTINGS Fax: +1.213.996.3003 | michaelnytzen@paulhastings.com |

www.paulhastings.com

This message is sent by a law firm and may contain information that is privileged or confidential. If you received this transmission in error, please notify the sender by reply e-mail and delete the message and any attachments.

For additional information, please visit our website at www.paulhastings.com

8150 Sunset - 8.10.15 Response to City's 6.29.15 Comments .pdf 2980K

August 10, 2015

Golder Project No.: 123-92034

John Irwin AG SCH 8150 Sunset Boulevard Owner, L.P. P.O. Box 10506 Beverly Hills, California 90213

RE:

RESPONSE TO THE JUNE 29, 2015 CITY OF LOS ANGELES GEOLOGY AND SOILS

REPORT CORRECTION LETTER

PROPOSED RESIDENTIAL AND COMMERCIAL DEVELOPMENT 8150 SUNSET BOULEVARD, LOS ANGELES, CALIFORNIA

Dear Mr. Irwin:

Golder Associates Inc. (Golder) is submitting this letter that contains our responses to the review comments provided by the City of Los Angeles (the City) Department of Building and Safety in the following document:

"Geology and Soils Report Correction Letter," Log # 83343-01 for Tentative Tract 72370 at 8150 West Sunset Boulevard, dated June 29, 2015.

A copy of the City's correction letter is included as Attachment A to this letter. The City's comments pertain to the following Golder reports that have been prepared for the proposed residential and commercial development at 8150 Sunset Boulevard in Los Angeles, California (the site):

- "Surface Fault Rupture Hazard Assessment, Proposed Residential and Commercial Development, 8150 Sunset Boulevard, City of Los Angeles, California," dated May 18, 2015 (referred to as "Golder's Fault Hazard Report" herein).
- "Geotechnical Exploration and Recommendations Report, Proposed Residential and Commercial Development, 8150 Sunset Blvd., Los Angeles, California," dated May 18, 2015 (referred to as "Golder's Geotechnical Report" herein).

The remainder of this letter contains each of the City's comments, which are presented verbatim in italics, followed by our response to each of the comments.

COMMENT 1

Based on the figure titled "Cross Section Locations" in the response report, a proposed structure is located at the northwest corner of the site. Provide geologic exploration 50 feet northwest of the structure (offsite) to determine the possible existence of an active fault within 50 feet of its planned location. Alternatively, show a setback area (building exclusion zone) or reinforced foundation zone on all site plans included in the reports.

RESPONSE 1

Golder gathered continuous core samples in boring B-106 on November 20, 2013 at a location approximately 29 feet south of the intersection of Havenhurst Drive and Sunset Boulevard, as shown on

Golder Associates Inc.
3 Corporate Park, Suite 200
Irvine, CA 92606 USA
Tel: (714) 508-4400 Fax: (949) 483-2339 www.golder.com

Figure 1 to this letter. Soil samples were collected as part of Golder's fault rupture hazard assessment of the Hollywood Fault at the site, as described in Golder's Fault Hazard Report. In addition, Golder performed cone penetration test (CPT) sounding CPT-14 immediately north of boring B-106, as shown on Figure 1 to this letter. Golder's fault hazard study established that the main trace of the Hollywood Fault is located northwest of B-106 and CPT-14. However, Golder's fault rupture investigation was unable to extend 50 feet beyond the site's boundary because of access and traffic restrictions on Sunset Boulevard. While the State of California Alquist-Priolo map shows the main trace of the Hollywood Fault more than 100 feet northwest of the site's northwest corner (see Figure 1 to this letter), our investigation was unable to unequivocally establish that the main Hollywood Fault trace is more than 50 feet from the northwest corner of the site.

In light of the above, Golder has followed the City's policy and established a 50-foot wide reinforced foundation zone in the northwest corner of the site as shown on Figure 1 to this letter. This zone does not contain the main trace of the Hollywood Fault, but could be subject to secondary surface fault rupture or off-fault displacements. Secondary fault rupture displacements are expected to be less than the displacements on the main Hollywood Fault trace that is located an unknown distance northwest of the reinforced foundation zone.

Figure 1 to this letter presents a composite site map showing the proposed reinforced foundation zone, the location of the main trace of the Hollywood Fault, the extents of the Alquist-Priolo Earthquake Fault Zone, CPT and boring locations, and the approximate limits of the proposed basement excavation and building development. Figure 1 to this letter is also included in Addendum No. 1 to Golder's Geotechnical Report along with the above-described recommendations for the reinforced foundation zone.

COMMENT 2

As explained in Comment 1 of the previous letter, dated 11/21/2014, the Department does not except a zero setback without considering a reinforced foundation that accommodates off-fault deformation. As noted in the current reports, the Department (Grading Division) has allowed a zero setback for a structure that was designed 10 inches of horizontal and 2 inches of vertical offset deformation. This design was for a specific project at 1840 Highland Avenue, which was recommended by GeoPentech (project consultants). Review the previous geologic work for 1840 Highland and compare the geologic/fault conditions of that site with the subject site. If appropriate, and based on independent review, indicate that the recommendations for that project (foundations that accommodate 10 inches of horizontal and 2 inches of vertical offset) would be adequate for the proposed project on Sunset Blvd.

RESPONSE 2

Golder has completed its own review the report titled "Potential Fault Surface Rupture Hazard and the Proposed Development at 1840 Highland Site, Hollywood, California" prepared by GeoPentech, dated January 24, 2001. We also reviewed the following addenda to this main report:

- Addendum 2 to January 24, 2001 Report: Structural Design Approach for Proposed Development at 1840 Highland Site, Highland District, Los Angeles, California, dated September 17, 2001.
- Addendum No. 3 to January 24, 2001 Report: Potential Fault Surface Rupture Hazard and Proposed Development at 1840 Highland Site, Highland District, Los Angeles, California, dated October 19, 2004.
- Addendum No. 4 to January 24, 2001 Report: Potential Fault Surface Rupture Hazard and Proposed Development at 1840 Highland Site, Highland District, Los Angeles, California, dated May 2, 2005.
- Response to the City of Los Angeles Department of Building and Safety Geologic Report Correction Letter Dated August 27, 2012 and Addendum No. 5 to January 24, 2001

Report: Potential Fault Surface Rupture Hazard and Proposed Development at 1840 Highland Site, Hollywood District, Los Angeles, California, dated July 2, 2013.

Summary of Review Findings

- The site that was assessed by GeoPentech for fault surface rupture hazard is located at 1840 Highland Avenue in Los Angeles, California (the Highland Site). The Highland Site is located adjacent to the mapped trace of the Hollywood Fault about 1.8 miles east-northeast of the 8150 Sunset Boulevard site.
- Four Holocene-active faults (F-1, F-2, F-3, and F-4) were identified from multiple investigations undertaken at the Highland Site from 2000 to 2005. These faults are located the northern portion of the 1840 Highland Site. The faults were identified by subsurface investigations that consisted of cone penetration testing (CPT); drilling, sampling, and logging of continuous core borings; and pedogenic (soil), stratigraphic, and radiocarbon dating analyses of the continuous core borings. These same methods were used by Golder in the subsurface investigations at the 8150 Sunset Boulevard site, and led to Golder's ultimate conclusion that faults are not present at the 8150 Sunset Boulevard site.
- The proposed development at the 1840 Highland Site consists of a five-story residential building with three below-grade levels. Building footprints of the proposed structures were sited to not be located across the traces of the mapped faults.
- Because Holocene-active faults were identified on the 1840 Highland Site, secondary displacement adjacent to the mapped faults was considered for the design of the proposed building. The magnitude of secondary displacements was established by comparing the Hollywood Fault to other strike-slips faults where surface rupture and secondary faulting has been documented from post-earthquake field investigations.
- Detailed engineering analyses, independent review of the Hollywood Fault characterization, and estimates of the expected primary and secondary fault displacement were used to develop the following recommended secondary fault design ground displacements for the Highland Site:
 - Horizontal design ground displacement: 8.4 to 10 inches (left lateral movement).
 - Vertical design ground displacement: 1.7 to 2 inches.

Conclusions

The 1840 Highland Site is located on or adjacent to the active trace of the Hollywood Fault about 1.8 miles east-northeast of the 8150 Sunset Boulevard site. Both the Highland Site and the 8150 Sunset Boulevard site are located within the State of California Alquist-Priolo Earthquake Fault Zone and within a few hundred feet of the estimated location of the principal trace of the Hollywood Fault. Unlike the Highland Site, however, traces of the Hollywood Fault have not been found on the 8150 Sunset Boulevard site. Therefore, we consider the probability of both primary and secondary fault ruptures to be lower on the 8150 Sunset Boulevard site than on the 1840 Highland Site.

GeoPentech argue that a technically sound approach is to design the proposed development to accommodate a reasonable estimate of future ground deformations from fault surface rupture. Golder concurs with the analytical approach taken by GeoPentech and its reviewers. We also concur that the estimated secondary displacement of 10 inches horizontal and 2 inches vertical are conservative estimates for the amounts of off-fault displacement for the Hollywood Fault. We consider that the adoption of a 10-inch horizontal ground displacement and a 2-inch vertical ground displacement for the design of foundations in the reinforced foundation zone located in the northwest corner of the 8150 Sunset Boulevard site, as shown on Figure 1 to this letter, is sufficiently conservative because:

- Neither the main trace nor secondary traces of the Hollywood Fault have been identified on the 8150 Sunset Boulevard site.
- The reinforced foundation zone has been included for the 8150 Sunset Boulevard site only because it has not been possible to unequivocally prove that the main trace of the Hollywood Fault is more than 50 feet from this site's northwest corner, and not because structures are being placed adjacent to known mapped traces of the Hollywood Fault such as at the 1840 Highland Site.
- The 50-foot setback distance is an accepted setback based on established urban planning practice rather than on fault and/or site-specific scientific analyses.
- Probabilistic fault displacement hazard analysis (PFDHA), an analysis technique that is increasingly being used to quantify primary and secondary surface displacements at sites on or adjacent to Holocene-active faults, indicates that little or no displacement can be expected in the reinforced foundation zone at 8150 Sunset Boulevard in the next 2,475 years. This return period is for the Maximum Considered Earthquake for ground shaking in the City of Los Angeles Building Code.

Addendum No. 1 to Golder's Geotechnical Report contains Golder's recommendation that structures located within the reinforced foundation zone in the northwest corner of the 8150 Sunset Boulevard site be designed for a 10-inch horizontal ground displacement and a 2-inch vertical ground displacement.

We note, however, that the footprint of the proposed structure to be developed at 8150 Sunset has not yet been finalized. It is possible that that final building footprint can be set back 50 feet southeast of the boring where faults have not been found. Such a setback would fit within existing Department policy for a building exclusion zone when building within 50 feet of known or suspected active fault traces.

Should the final proposed building footprint extend into the special foundation zone shown on Figure 1, then the owner may undertake further fault investigations surrounding the 8150 Sunset site. The purpose of these investigations will be to use subsurface investigations to establish whether a trace (main or secondary) of the Hollywood fault occurs within 50 feet of the final building footprint. If these proposed investigations prove to not be feasible (they will need to be located on part of Sunset Boulevard), then structures will be designed initially to accommodate 10 inches of left-lateral horizontal displacement and 2 inches of vertical displacement (up-to-the-north). Should the owner choose to build within the special foundation zone, then further analysis of the locations and orientations of known and possible faults will be undertaken at that time.

COMMENT 3

Regarding the response to Comment 5, if the consultant is referring to Figure 5 as the geotechnical map, the aerial photography thereon shows existing buildings, however proposed buildings are not shown. If the consultant is referring to Figures 6a and 6b as the cross-sections, no existing or proposed buildings, retaining or walls or basements are shown. Provide a complete response. (P/BC 2014-113)

RESPONSE 3

Figure 4 in Golder's Geotechnical Report contains a map of the site that shows the site's boundary, the limits of the proposed basement excavation, the proposed footprints of new buildings, boring locations, and the locations of geotechnical/geologic cross-sections. Figures 5A and 5B in Golder's Geotechnical Report contain the geotechnical/geologic cross-sections through the site. These figures show the property line, existing ground surface, approximate limits of the basement excavation, extents of proposed grading work, boring locations, and earth material contacts.

COMMENT 4

Regarding the response to Comment 6, the Department does not allow estimation of shear strength parameters for analyses. In addition, the values presented for widths less than 10 feet are much higher than calculated by Terzaghi's bearing capacity equation. Provide bearing capacities based on direct shear testing (3-points minimum) correctly calculated. Provide settlement analyses. Alternatively, use Code bearing values.

RESPONSE 4

In Golder's professional opinion, the use of standard penetration test (SPT) and cone penetration test (CPT) results for use in designing foundations bearing on sand (such as the foundations at the site) is superior to using the results of laboratory direct shear tests (ASTM D3080) due to the great difficulty in obtaining relatively undisturbed samples of sand for laboratory strength testing. However, realizing that the City no longer allows estimation of shear strength parameters from SPT and CPT results, Golder had three representative soil samples from the site direct shear tested in accordance with ASTM D3080. The direct shear tests were performed by Hushmand Associates, Inc.'s (HAI) geotechnical testing laboratory under the direction of Golder. The direct shear tests were performed on the following samples that were collected during Golder's previous field work at the site (as described in Golder's Geotechnical and Fault Hazard Reports):

- Bulk sample 1 from boring B-102A (depth = 30 to 35 feet below ground surface)
- Core sample from boring B-105 (depth = 14 to 15 feet below ground surface)
- Core sample from boring B-106 (depth = 30 to 31 feet below ground surface)

The above-listed samples were selected for direct shear testing as they are considered to be representative and provide an appropriate areal and elevation coverage across the site. Three-point, consolidated-drained direct shear testing was performed on remolded and saturated test specimens from each of the above-listed samples. Remolding of the test specimens was necessary since the samples were disturbed bulk and core samples. The measured in-situ dry density and moisture content of previously tested samples from the site ranged from 109.2 to 124.1 pounds per cubic foot (pcf) and 3.7 to 10.2 percent, respectively, as shown in Appendix C of Golder's Geotechnical Report. Therefore, Golder instructed the laboratory to remold each direct shear test specimen to a dry density of 110 pcf at a moisture content of 5 percent. Remolding the direct shear test specimens to a dry density (110 pcf) that is approximately equal to the lowest measured in-situ dry density (109.2 pcf) yielded conservative results as the shear strengths measured in the direct shear tests would increase if the samples were remolded to a higher dry density. The direct shear tests were performed at effective normal stresses of 1, 5, and 10 ksf, which are considered to bound the range of normal stresses that will be present beneath the proposed foundations and behind the retaining walls and shoring system(s). The laboratory direct shear test results are presented in Attachment B to this letter. Golder has reviewed the laboratory direct shear data provided by HAI and concurs with the results. As such, Golder accepts responsibility for use of the laboratory direct shear data presented in Attachment B to this letter.

Figure 2 to this letter presents a summary plot of shear stress at failure (i.e., shear stress at the end of the direct shear tests) versus normal stress for each of the three sets of direct shear tests. Figure 2 also shows a conservative best-fit linear failure envelope for the direct shear test data, with the cohesion intercept set at zero (which is appropriate for the granular soils at the site). As can be seen on Figure 2, the conservative best-fit linear failure envelope for the direct shear test data corresponds to a friction angle of 32 degrees (with a cohesion intercept of zero). Figure 2 and Attachment B to this letter are included in Addendum No. 1 to Golder's Geotechnical Report.

As described in Section 4.4 of Golder's Geotechnical Report, a friction angle of 32 degrees (with zero cohesion) was used in the calculation of bearing capacities of shallow foundations. Based on the direct shear laboratory test results described above and summarized on Figure 2, use of a friction angle of 32

degrees for the site's soils has been justified. Therefore, the allowable bearing pressures given in Tables 2 and 3 of Golder's Geotechnical Report are valid. Attachment C to this letter contains the shallow foundation bearing capacity and settlement calculations on which Tables 2 and 3 of Golder's Geotechnical Report are based. The allowable foundation bearing pressure for a given footing size equals the lower of the following two values:

- The allowable bearing pressure based on bearing capacity, where the allowable bearing pressure is calculated using Terzaghi's ultimate bearing capacity equation and then applying a factor of safety of 3.
- The allowable bearing pressure based on settlement, where the allowable bearing pressure is that pressure that is calculated to induce a foundation settlement of approximately one inch using the method developed by Burland and Burbidge (1985).

COMMENT 5

Comment 10 on the relatively low blow count data was to question the bearing capacity values recommended. The Department does not allow determination of the internal angle of friction, bearing capacities and pile skin friction by SPT or CPT data. Determine bearing capacity and/or skin friction by direct shear test results.

RESPONSE 5

As discussed in the response to comment 4 above, the results of laboratory direct shear tests on subsurface soils from the site, which are summarized in Figure 2 to this letter, have corroborated the friction angle of 32 degrees that was used to develop the allowable bearing pressures for shallow foundations that are given in Section 4.3.2 of Golder's Geotechnical Report. Therefore, the allowable bearing pressures in Section 4.3.2 of Golder's Geotechnical Report are valid.

As stated in Golder's Geotechnical Report, the ultimate axial pile capacities were calculated using SPT and CPT data in conjunction with proven conservative methods (i.e., the FHWA and LCPC design methods). The FHWA and LCPC methods use SPT blowcounts and CPT tip resistances, respectively, as direct input into empirical pile capacity equations (i.e., SPT blowcounts and CPT tip resistances are not converted into friction angle values or other soil parameters). In preparing this response letter, Golder recalculated the ultimate axial pile capacities using the method of Kulhawy (1996) *since this method uses the soil's friction angle, and not SPT or CPT data, in the calculation of pile capacity. Figure 3 to this letter presents a plot of the CIDH pile ultimate axial capacities calculated using the method of Kulhawy (1996) as compared to the capacities calculated using the FHWA and LCPC methods. On Figure 3 to this letter, the Kulhawy (1996) capacities are referred to as "Direct Shear" while the FHWA and LCPC methods are referred to as "CPT/SPT." The FHWA and LCPC capacities shown on Figure 3 to this letter are the same as those shown on Figure 6 of Golder's Geotechnical Report. As can be seen on Figure 3 to this letter, using the Kulhawy (1996) method results in axial pile capacities that exceed those calculated by the FHWA and LCPC methods. Therefore, we consider it prudent to use the ultimate axial pile capacities presented on Figure 6 of Golder's Geotechnical Report.

¹ Kulhawy, F. H. (1996) Chapter 14, Drilled Shaft Foundations, in Foundation Engineering Handbook, H. Y. Fang. 2nd Edition

COMMENT 6

Regarding the response to Comment 11, the Department does not accept SPT/CPT derived shear strengths in long-term slope stability and retaining wall analyses. Provide saturated direct shear test data on the earth material to be retained, and utilize the saturated unit weights of earth materials in long-term slope stability and retaining wall analyses where these result in more critical computed factors of safety. (P/BC 2014-049)

RESPONSE 6

As discussed in the response to comment 4 above, the results of direct shear tests on subsurface soils from the site, which are summarized in Figure 2 to this letter, have corroborated the friction angle value of 32 degrees that was used to develop the lateral earth pressure recommendations in Section 4.5 of Golder's Geotechnical Report. Therefore, based on the results of the direct shear tests, the lateral earth pressures provided in Golder's Geotechnical Report are valid.

COMMENT 7

Regarding the response to Comment 13, provide recommendations for shoring, including the lateral earth pressure shoring is the retaining.

Where an excavation would remove lateral support (as defined in Code Section 3307.3.1) from an adjacent public way, property or structure, provide analysis demonstrating that shoring has an acceptable factor of safety (FS ≥ 1.25) against failure based on the shear strength parameters of the earth materials the shoring is to support, at the most critical degree of saturation that is expected to occur. All surcharge loads shall be considered. (P/BC 2014-113)

RESPONSE 7

Addendum No. 1 to Golder's Geotechnical Report presents our geotechnical recommendations for shoring at the site. The actual design of the shoring system(s) will be performed by others using Golder's recommendations. Therefore, analyses that demonstrate the shoring has an acceptable factor of safety against failure cannot be provided at this time. Addendum No. 1 to Golder's Geotechnical Report states that the shoring designer will be responsible for analyzing the shoring system(s) to demonstrate that the shoring has an acceptable factor of safety (FS ≥ 1.25) against failure.

COMMENT 8

Regarding the response to Comment 15, were is the laboratory report cover letter? Provide it.

RESPONSE 8

The cover letter for the geotechnical laboratory results contained in Golder's Geotechnical Report is presented in Attachment D to this letter along with all of the laboratory test sheets.

ENGINEERING

CALIF

GEOLOGIST

We trust this response letter addresses the City's review comments in a satisfactory manner. If you have any questions or require additional information, please contact either of the undersigned.

Sincerely,

GOLDER ASSOCIATES INC.

Ryan Hillman, P.E. Senior Engineer

Alan Hull, Ph.D., C.E.G. Principal and Practice Leader

Attachments:

Figure 1 - Map of CPT, Borehole Locations and Reinforced Foundation Zone

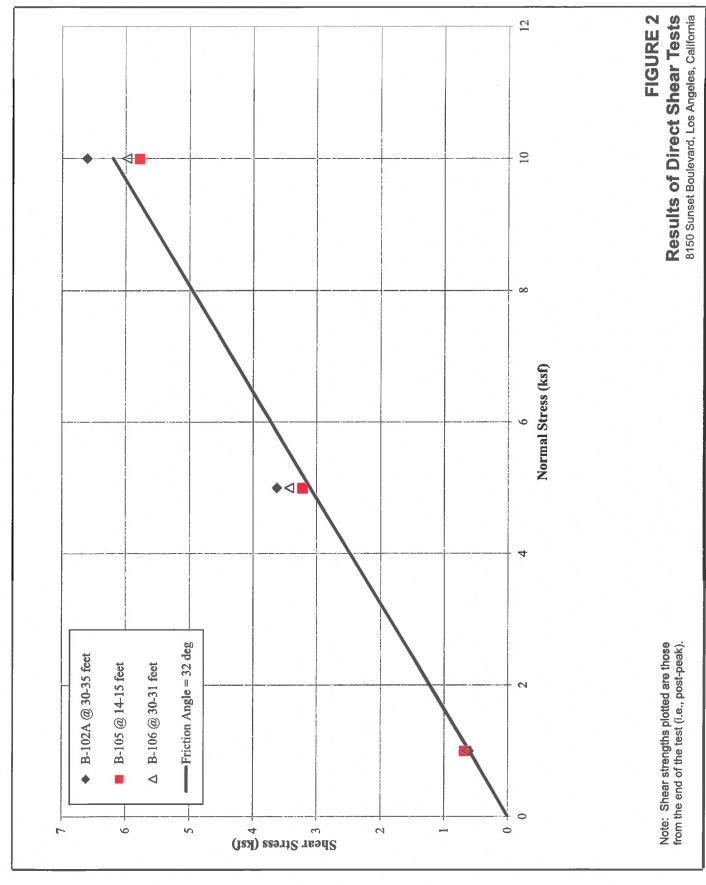
Figure 2 - Results of Direct Shear Tests

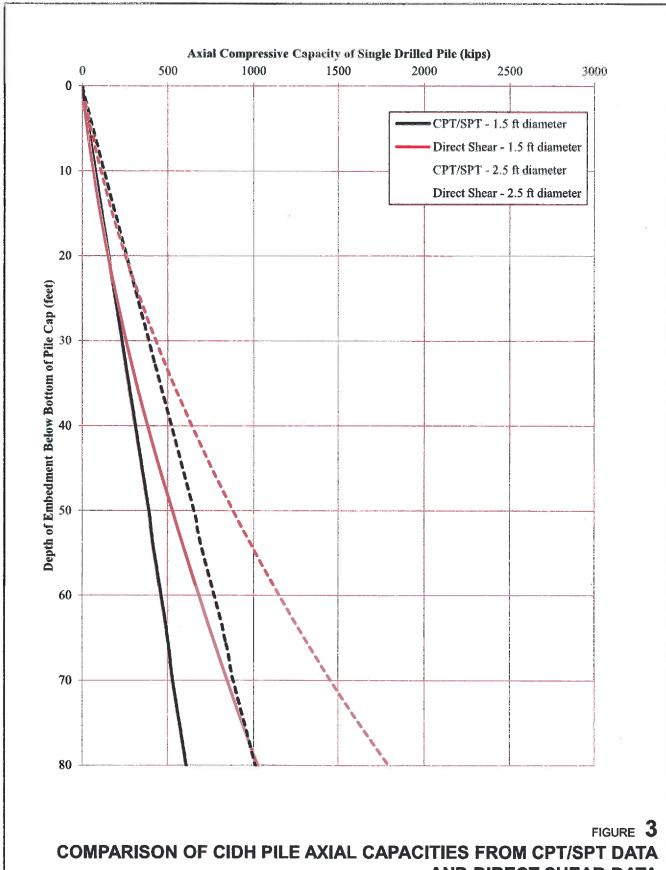
Figure 3 - Comparison of CIDH Pile Axial Capacities from CPT/SPT Data and Direct Shear Data

Attachment A - City of Los Angeles Geology and Soils Report Correction Letter

Attachment B - Direct Shear Laboratory Test Results

No. C71988


Attachment C - Shallow Foundation Bearing Capacity and Settlement Calculations


Attachment D - Geotechnical Laboratory Test Results

MAProjects/123_Jobs/123-92034 Townscape Sunset(99_PROJECTS\LetterToClty/02_PRODUCTION\ResponseToComments\BoreholeLocationMap.mxd, 8/5/2015, 03:05 PM by kkayii

AND DIRECT SHEAR DATA

8150 SUNSET BOULEVARD, LOS ANGELES, CALIFORNIA

ATTACHMENT A CITY OF LOS ANGELES GEOLOGY AND SOILS REPORT CORRECTION LETTER

CITY OF LOS ANGELES INTER-DEPARTMENTAL CORRESPONDENCE

GEOLOGY AND SOILS REPORT CORRECTION LETTER

June 29, 2015

LOG # 83343-01

SOILS/GEOLOGY FILE - 2

AP

To:

Jim Tokunaga, Deputy Advisory Agency

Department of City Planning

200 N. Spring Street, 7th Floor, Room 750

From:

John Weight, Grading Division Chief

Department of Building and Safety

Tentative Tract:

72370

LOT(S):

1 Master Lot and 10 Airspace Lots

LOCATION:

8150 W. Sunset Boulevard

CURRENT REFERENCE REPORT/LETTER(S) Soils Report Response Report Geology Report	REPORT No. 123-92034 123-92034 123-92034-02	DATE(S) OF <u>DOCUMENT</u> 05/18/2015 05/18/2015	PREPARED BY Golder Associates Golder Associates "
PREVIOUS REFERENCE REPORT/LETTER(S) Dept. Correction Letter	REPORT No 83343	DATE(S) OF DOCUMENT 11/21/2014	PREPARED BY LADBS
Geology Report Soils Report	123-92034-02 123-92034	01/27/2014 10/03/2014	Golder Associates

The Grading Division of the Department of Building and Safety has reviewed the referenced reports that concern a proposed multi-level residential and commercial development, including one building with a 9-story and a 16-story portion and a separate 3 story building. Two subterranean levels are proposed. According to the reports, the site gently slopes to the south and is occupied by commercial developments. All of the existing structures are to be removed to accommodate the proposed development. The earth materials at the subsurface exploration locations consist of alluvium.

The property is located within an Official Alquist-Priolo Earthquake Fault Zone (APEFZ) that was established (November 6, 2014) by the California Geological Survey for the Hollywood fault on the USGS 7.5 minute Hollywood Quadrangle. Along with the response report that addresses the comments of the 11/21/2014 Department Correction Letter, a new revised geologic report, dated 05/18/2015 was submitted and is intended to replace the geologic report dated 01/27/2014.

The review of the subject reports can not be completed at this time and will be continued upon submittal of an addendum to the report which shall include, but not be limited to, the following:

(Note: Numbers in parenthesis () refer to applicable sections of the 2014 City of LA Building Code. P/BC numbers refer the applicable Information Bulletin. Information Bulletins can be accessed on the internet at LADBS.ORG.)

- 1. Based on the figure titled "Cross Section Locations" in the response report, a proposed structure is located at the northwest corner of the site. Provide geologic exploration 50 feet northwest of the structure (offsite) to determine the possible existence of an active fault within 50 feet of its planned location. Alternatively, show a setback area (building exclusion zone) or reinforced foundation zone on all site plans included in the reports.
- 2. As explained in Comment 1 of the previous letter, dated 11/21/2014, the Department does not except a zero setback without considering a reinforced foundation that accommodates off-fault deformation. As noted in the current reports, the Department (Grading Division) has allowed a zero setback for a structure that was designed 10 inches of horizontal and 2 inches of vertical offset deformation. This design was for a specific project at 1840 Highland Avenue, which was recommended by GeoPentech (project consultants). Review the previous geologic work for 1840 Highland and compare the geologic/fault conditions of that site with the subject site. If appropriate, and based on independent review, indicate that the recommendations for that project (foundations that accommodate 10 inches of horizontal and 2 inches of vertical offset) would be adequate for the proposed project on Sunset Blvd.
- 3. Regarding the response to Comment 5, if the consultant is referring to Figure 5 as the geotechnical map, the aerial photography thereon shows existing buildings, however proposed buildings are not shown. If the consultant is referring to Figures 6a and 6b as the cross-sections, no existing or proposed buildings, retaining or walls or basements are shown. Provide a complete response. (P/BC 2014-113)
- 4. Regarding the response to Comment 6, the Department does not allow estimation of shear strength parameters for analyses. In addition, the values presented for widths less than 10 feet are much higher than calculated by Terzaghi's bearing capacity equation. Provide bearing capacities based on direct shear testing (3-points minimum) correctly calculated. Provide settlement analyses. Alternatively, use Code bearing values.
- 5. Comment 10 on the relatively low blow count data was to question the bearing capacity values recommended. The Department does not allow determination of the internal angle of friction, bearing capacities and pile skin friction by SPT or CPT data. Determine bearing capacity and/or skin friction by direct shear test results.
- 6. Regarding the response to Comment 11, the Department does not accept SPT/CPT derived shear strengths in long-term slope stability and retaining wall analyses. Provide saturated direct shear test data on the earth material to be retained, and utilize the saturated unit weights of earth materials in long-term slope stability and retaining wall analyses where these result in more critical computed factors of safety. (P/BC 2014-049)
- 7. Regarding the response to Comment 13, provide recommendations for shoring, including the lateral earth pressure shoring is the retaining.
 - Where an excavation would remove lateral support (as defined in Code Section 3307.3.1) from an adjacent public way, property or structure, provide analysis demonstrating that shoring has an acceptable factor of safety (FS \geq 1.25) against failure based on the shear strength parameters of the earth materials the shoring is to support, at the most critical

degree of saturation that is expected to occur. All surcharge loads shall be considered. (P/BC 2014-113)

8. Regarding the response to Comment 15, were is the laboratory report cover letter? Provide it.

The geologist and soils engineer shall prepare a report containing the corrections indicated in this letter. The report shall be in the form of an itemized response. It is recommended that once all correction items have been addressed in a response report, to contact the report review engineer and/or geologist to schedule a verification appointment to demonstrate compliance with all the corrections. Do not schedule an appointment until all corrections have been addressed. Bring three copies of the response report, including one unbound wet-signed original for microfilming in the event that the report is found to be acceptable.

DCS/CD:dcs/cd Log No. 83343-01 213-482-0480

cc: AG SCH 8150 Sunset Boulevard Owner LP, Owner

Michael Nytzen, Applicant

Golder Associates, Project Consultant

LA District Office

ATTACHMENT B DIRECT SHEAR LABORATORY TEST RESULTS

Hushmand Associates, Inc. 1721 E. Lambert Rd, Ste. B La Habra, CA 90631 p. (562) 690-3737w. haieng.come. hai@haieng.com

July 30th, 2015

Golder Associates Inc. 3 Corporate Park, Suite 200 Irvine, CA 92602

Attention: Ms. Cynthia Valenzuela

SUBJECT: Laboratory Test Results

Golder Project Name: Townscape Sunset Geotech. Recommendations

Golder Project No.: 12392034-02 HAI Project No.: GLDL-15-008

Dear Ms. Valenzuela:

Enclosed are the results of the laboratory testing conducted on samples for the subject project. The testing was conducted in general accordance with the following test procedures:

Type of Test

Test Procedure

Direct Shear

ASTM D3080

Attached are: three (3) three-point Direct Shear test results on remolded samples.

We appreciate the opportunity to provide our testing services to Golder Associates Inc. If you have any questions regarding these test results, please contact us.

Sincerely,

HUSHMAND ASSOCIATES, INC.

Min Zhang, PhD, PE

Project Engineer

Client: Golder Associates Inc.

Project Name: Townscape Sunset Geotechnical Recommendations

Project Number: 12392034-02

B-102A Boring No.:

Bulk 1 Sample No.:

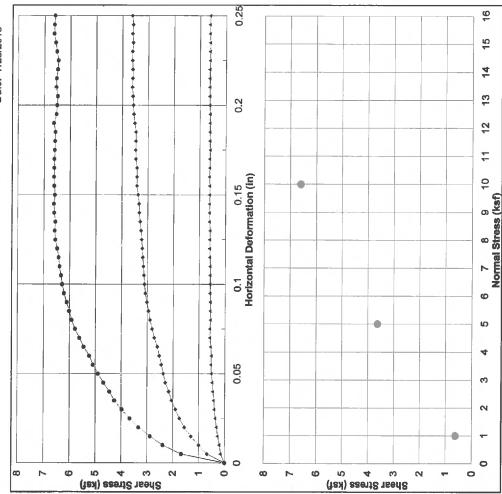
30-35 Depth (ft): Soil description: Dark Yellowish Brown, Silty Sand (SM)

Remolded to 110 pcf @ 5% Sample type:

Consolidated, Drained Type of test:

	\	•	•
Normal Stress (ksf)	1	2	10
Deformation Rate (in/mln)		0.002	

Peak Shear Stress (ksf)	0.62	3.62	6.64	
Shear stress @ end of test (ksf)	0.61	3.62	09'9	
Initial height of sample (in)	1	1	1	
Height of sample before shear (in)	0.9817	0.9544	0.9268	
Diameter of sample (in)	2.42	2.42	2.42	
Initial Moisture Content (%)	5.0	5.0	5.0	
Final Moisture Content (%)	13.4	11.7	11.0	
Dry Density (pcf)	110.0	110.0	110.0	
Final Saturation (%)	72.7	69.4	72.2	


DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: GLDL-15-008 Tested by: SE/KL

Date: 7/28/2015

Checked by: MZ

Client: Golder Associates Inc.
Project Name: Townscape Sunset Geotechnical Recommendations
Project Number: 12392034-02

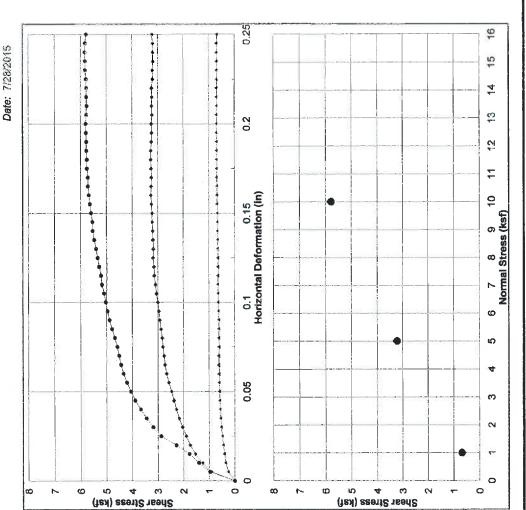
B-105 Boring No.:

Core Sample No.: 14-15 Depth (ft): Soil description: Dark Yellowish Brown, Silty Sand (SM)

Remolded to 110 pcf @ 5% Sample type:

Consolidated, Drained Type of test:

	A	*	•
Normal Stress (ksf)	-1	S	10
Deformation Rate (in/min)		0.002	


Peak Shear Stress (ksf)	•	0.70	3.26	5.83
Shear stress @ end of test (ksf)	•	0.68	3.22	5.78
Initial height of sample (in)		+	1	1
Height of sample before shear (in)		0.9788	0.9200	0.8769

Initial height of sample (in)	1	-	-
Height of sample before shear (in)	0.9788	0.9200	0.8769
Diameter of sample (in)	2.42	2.42	2.42
Initial Moisture Content (%)	5.0	5.0	5.0
Final Moisture Content (%)	14.6	12.7	11.8
Dry Density (pcf)	110.0	110.0	110.0
Final Saturation (%)	80.2	85.2	94.6

DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: GLDL-15-008 Tested by: SE/KL Checked by: MZ Date: 7/28/2015

Client: Golder Associates Inc.

Project Name: Townscape Sunset Geotechnical Recommendations
Project Number: 12392034-02

B-106 Boring No.:

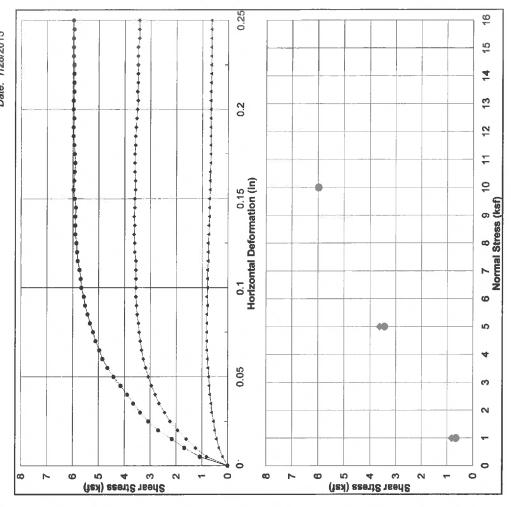
Core Sample No.: 30-31 Depth (ft): Soil description: Brown, Poorly Graded Sand with Silt (SP-SM)

Remolded to 110 pcf @ 5% Sample type:

Consolidated, Drained Type of test:

	V	•	•
Normal Stress (ksf)	1	2	10
Deformation Rate (in/min)		0.002	

Peak Shear Stress (KST)	,	0.82	3.62	5.98	
Shear stress @ end of test (ksf)	•	0.65	3.43	5.98	
Initial height of sample (in)		1	1	-	


Initial height of sample (in)	1	1	+
Height of sample before shear (in)	0.9869	0.9595	0.9215
Diameter of sample (in)	2.42	2.42	2.42
Initial Moisture Content (%)	5.0	5.0	5.0
Final Moisture Content (%)	16.0	15.4	14.9
Dry Density (pcf)	110.0	110.0	110.0
Final Saturation (%)	84.2	88.8	97.6

DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: GLDL-15-008 Tested by: SEIKL Checked by: MZ

Date: 7/28/2015

ATTACHMENT C SHALLOW FOUNDATION BEARING CAPACITY AND SETTLEMENT CALCULATIONS

2-foot by 2-foot Square Footing

	<u></u>	100t by 2-100t bqus	10 1.001	AND	
Soil Properties:	Foundation	n Properties:		Other Parameters:	
friction angle, ϕ' or ϕ (deg):	32	width, B (ft):	2.0		0.0
cohesion intercept, c' or c (psf):	0	length, L (ft):	2.0		20
total unit weight, γ (pcf):		nent depth, D (ft):	2.0	-	0.0
thickness of granular layer (ft):		clination, α (deg):	0.0	**	0.0
Bearing Capacity Calculations:					
qult = gross ultimate bearing	capacity of foundation	n soil			
$=c'N_cs_cd_ci_cb_cg_c+\sigma'_DN_qs_q$	$d_q i_q b_q g_q + 0.5 \gamma B N_\gamma s_\gamma t$	$d_{\gamma}i_{\gamma}b_{\gamma}g_{\gamma}$			
where:					
N_c , N_q , $N_\gamma = di$	mensionless bearing	capacity factors = fu	nction o	f soil friction angle	
	$N_{q} = e^{\pi \tan \phi'} \tan^{2}(45 + \phi')$	(2) = 23.2			
	$N_c = (N_q-1)/\tan\phi' =$	35.5		(if $\phi = 0$ then $N_c = 5.1$)	
	$N_y = 2(N_q + 1) \tan \phi' =$	30.2			
$s_c, s_q, s_\gamma = dime$	ensionless footing sha	pe factors			
	$s_c = 1 + (B/L)(N_q/N_c) =$	1.65			
	$s_q = 1 + (B/L) tan \phi' =$	1.62			
	s _v = 1-0.4(B/L) =	0.60			
$d_c, d_q, d_y = dim$	ensionless footing de	pth factors			
	$k = D/B$ if $D/B \le 1$ an		> 1 =	1.00	
	$d_c = 1 + 0.4k = 1$	` /			
	$d_q = 1+2k \tan \phi' (1-\sin \theta')$	$\phi h^2 = 1$.28		
	$\mathbf{d_v} = 1.00$	Ψ)			
	tors all equal 1 for this	s analysis)			
	ffective stress at dept		nd surfac	ce (psf) = 244	
~	nit weight of soil (pcf	_		()	
·	fD _w ≤D)	•			
	w-D)/B) (if D < Dw	< D+B)			
= γ (i	if $D_w \ge D + B$ or if $\phi =$	0)			
,	where:	-,			
	$\gamma_{\rm w} = \text{unit w}$	eight of water (pcf)	=	62.4	
$\gamma' =$	122 pcf				
$q_{ult} = 13,938$	psf				
$q_{allow} = gross allowable bearing$	ng pressure of founda	tion soil			
$= q_{ m ult}$ / FS					
where:		_			
FS = factor of s					
$\mathbf{q}_{\mathrm{allow}} = 4.646$	psf (based	on bearing capaci	ty)		
6.4 .61.13					
Settlement Calculations: S = foundation settlement					
$= fs*fl*ft*(q'-\sigma v')*(1.71/N^{1/2})$	4 and 0.7 (Dumland a	nd Burbidge, 1985)			
- 18 · 11 · 11 · (q -0 v) · (1.717N where:) Bulland a	na Burolage, 1963)			
fs= :	shape factor				
: and	[(1.25*L/B)/(L/B+0.2	$[5)]^{0.2} = 1.0$			
$\mathbf{fl} = 0$	correction factor for tl	ne depth of sand or p	gravel la	yer	
=]	$Hs/Z_1*(2-Hs/Z_1) =$	1.0			
ft= 1	time factor				
	$(1+R_3+R_1*\log(t/3)) =$		-	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads)	
_	Average gross effective			1,023 = 21,370 psf	
	Maximum previous et				
	Average SPT N-value		oundatio	on = 15	
B=	Foundation width (m	0.6			
S = 25	mm				
q _{allow} = 21,370		5 mm = 1 inch			

5-foot by 5-foot Square Footing

Soil Properties:			Foundation Propert	ies:		Other Parameters:	
friction angle,	φ' or φ (deg):	32	-	h, B (ft):	5.0		0.0
cohesion intercept	, c' or c (psf):	0		h, L (ft):	5.0	depth to groundwater table, D _w (ft):	120
total unit w	eight, γ (pcf):	122	embedment dept	h, D (ft):	2.0	applied shear load, V (lbs):	0.0
thickness of gram	ilar layer (ft):	150	base inclination,	α (deg):	0.0	dcpth of removed soil over foundation (ft):	0.0
Bearing Capacity Calcul	ations:						
$q_{ult} = gross \ ult$	imate bearing o	capacity o	f foundation soil				
	$b_c g_c + \sigma'_D N_q s_q c$ where:	d _զ i _զ b _գ g _գ +	$0.5\gamma'BN_{\gamma}s_{\gamma}d_{\gamma}i_{\gamma}b_{\gamma}g_{\gamma}$				
1	N_c , N_a , $N_v = dir$	mensionle	ss bearing capacity f	actors = fu	nction	of soil friction angle	
			$\tan^2(45 + \phi'/2) =$	23.2			
		$N_c = (N_c - 1)$		35.5		(if $\phi = 0$ then $N_c = 5.1$)	
			+1)tano'=	30.2		,	
£		. ,	footing shape factors	3			
			$L)(N_a/N_c) =$	1.65			
		$s_0 = 1 + (B/$		1,62			
		$s_v = 1-0.4($		0.60			
(s footing depth factor				
	1	c = D/B if	$D/B \le 1$ and $tan^{-1}(D/B)$		> 1 =	0.40	
		$d_c = 1 + 0.4$					
			$tan\phi' (1-sin\phi')^2 = 1.00$	1	.11		
		,	1.00 1al 1 for this analysis)			
	-	_	ress at depth D belov		nd surfa	ace (psf) = 244	
	y' = effective ur			_		,	
	$= \gamma - \gamma_w$ (i)	$f D_{\mathbf{w}} \leq D$					
	$= \gamma - \gamma_w (1 - (D_v))$	_v -D)/B)	$(if D < D_w < D+B)$				
	= γ (i:	$f D_w \ge D +$	$-\mathbf{B} \text{ or if } \phi = 0)$				
		where:					
			$\gamma_w = \text{unit weight of w}$	rater (pcf)	=	62.4	
	$\gamma' =$	122	pcf				
$q_{ult} =$	15,733 p	psf					
q _{allow} = gross a	illowable beari	ng pressu	re of foundation soil				
$= q_{ult} / FS$. .					
	where:						
1	FS = factor of s	safety =	3.0			_	
$q_{allow} =$	5,244	psf	(based on bear	ing capaci	ity)		
Settlement Calculations:							
S = foundation							
	<mark>'-σν')*(1.71/N^{1.4}</mark> where:	')*B ^{0.7}	(Burland and Burbic	dge, 1985)			
	fs= s	shape fact	or				
	= [(1.25*L/E	$(L/B+0.25)]^{0.2} =$	1.0			
			factor for the depth of	of sand or	gravel l	ayer	
	= I	Hs/Z _I *(2-I	Hs/Z_l) =	1.0			
		ime facto					
	≡ ((1+R ₃ +R _t *	$\log(t/3) =$	1.57 (Generally:	: R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads)	
	•		ross effective applied	-		•	
			previous effective o		-	•	
		_	SPT N-value within I	3 ^{0.7} of the	foundat	tion = 15	
	B=	Foundatio	on width (m)=	1.5			
S =	25	mm					
q _{allow} =	5,460 p	psf	for S <= 25 mm = 1	inch			

10-foot by 10-foot Square Footing

						
Soil Properties:	F	oundation Propert	ies:		Other Parameters:	
friction angle, \$\phi' or \$\phi\$ (deg):	32	widt	h, B (ft):	10.0	ground inclination, β (deg):	0.0
cohesion intercept, c' or c (psf):	0	lengt	h, L (ft):	10.0	depth to groundwater table, Dw (ft):	120
total unit weight, γ (pcf):	122	embedment dept	h, D (ft):	2.0	applied shear load, V (lbs):	0.0
thickness of granular layer (ft):	150	base inclination,	α (deg):	0.0	depth of removed soil over foundation (ft):	20.0
Province Constitute Colonial Street						
Bearing Capacity Calculations:		C 1 . 41				
q _{uli} = gross ultimate bearing						
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_q s_q$	$_{i}d_{q}1_{q}b_{q}g_{q}+0$	ͿͺϽϒΒΝ _ϒ ϛ _ϯ ϲͿ _Ͱ ϧ _ϯ ϗ _ϯ				
where:					. C - 21 - 62 - 42 - 12 - 12 - 12 - 12 - 12 - 12 - 1	
				nction o	of soil friction angle	
		$an^2(45+\phi^{1/2}) =$	23.2			
	$N_c = (N_q - 1)$	•	35.5		(if $\phi = 0$ then $N_c = 5.1$)	
	$N_{\gamma} = 2(N_{q} + 1)$		30.2			
$s_c, s_q, s_\gamma = dime$	ensionless fo	ooting shape factors	:			
	$s_c = 1 + (B/L)$	$(N_q/N_c) =$	1.65			
	$s_a = 1 + (B/L)$)tanφ' =	1.62			
	$s_{y} = 1-0.4(B$	/L) =	0.60			
	,	footing depth factor				
- 4 .		$D/B \le 1$ and $tan^{-1}(D/B)$		> 1 =	0.20	
	$d_{c} = 1 + 0.4k$	_	D) II D/D		0.20	
	•					
	•	$\operatorname{sin}\phi'\left(1-\operatorname{sin}\phi'\right)^{2}=$	ì	.06		
	$\mathbf{d}_{\gamma} = 1.$					
***		l 1 for this analysis				
		ss at depth D below	the grour	id surfa	ce (psf) = 244	
$\gamma' = effective \mathbf{u}$	nit weight o	f soil (pcf)				
$= \gamma - \gamma_w$ (i	$fD_w \leq D$)					
$= \gamma - \gamma_{\rm w}(1 - (D_{\rm v}))$	w-D)/B) (i	$if D < D_w < D+B)$				
= γ (i	$if D_w \ge D + B$	or if $\phi = 0$)				
	where:					
	γ	v = unit weight of w	ater (pcf)	=	62.4	
$\gamma^{t} =$	122 pc	cf				
$\mathbf{q}_{\mathrm{ult}} = 20,755$	psf					
Tun ,	•					
q _{allow} = gross allowable bear	ing pressure	of foundation soil				
$= q_{ult} / FS$	01					
where:						
FS = factor of	safety =	3.0				
	psf	(based on beari	ng canaci	fv)]	
$q_{\text{allow}} = 6,918$	hai	(based on beat)	ng capaci	-37	J	
Settlement Calculations:						
S = foundation settlement						
= $fs*fl*ft*(q'-\sigma v')*(1.71/N^1)$	4\eD0.7	Burland and Burbic	lan 1085)			
- Is 'II 'II '(q-5v)'(I.///N where:).D (Bullatin alla Bulbic	ige, 1965)			
	1 0 .					
	shape factor					
		$/(L/B+0.25)]^{0.2} =$	1.0			
		actor for the depth of		gravel la	аует	
= 1	$Hs/Z_l^*(2-Hs)$	s/Z_1) =	1.0			
	time factor					
= 1	(1+R ₃ +R ₁ *k	og(t/3)) =	1.57 (Generally:	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads)	
		ss effective applied			170 = 3,550 psf	
		revious effective ov				
N=	Average SP	T N-value within E	$3^{0.7}$ of the 1	oundati	ion = 15	
		width (m)=	3.0			
S = 21	mm					
$q_{\text{allow}} = 3,550$	nef £	or S <= 25 mm = 1	inch			
$q_{\text{allow}} = 3,550$	har I	01 0 \- 23 IIIII = 1	шен			

15-foot by 15-foot Square Footing

Soil Properties:		Foundation Properti			Other Parameters:	
friction angle, φ' or φ (deg)			h, B (ft):	15.0	ground inclination, β (deg):	0.0
cohesion intercept, c' or c (psf)		_	h, L (ft):	15.0	depth to groundwater table, D _w (ft):	120
total unit weight, γ (pcf)		embedment depti		2.0	applied shear load, V (lbs):	0.0
thickness of granular layer (ft)	: 150	base inclination,	a (aeg):	0.0	depth of removed soil over foundation (ft):	20.0
Bearing Capacity Calculations:						
q _{ult} = gross ultimate bearin						
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_q$	$s_q d_q i_q b_q g_q +$	$0.5\gamma'BN_{\gamma}s_{\gamma}d_{\gamma}i_{\gamma}b_{\gamma}g_{\gamma}$				
where:						
N_c , N_q , $N_\gamma = c$		ss bearing capacity fa	actors = fi	unction	of soil friction angle	
	7	$\tan^2(45+\phi'/2) =$	23.2			
	$N_c = (N_q - 1)$)/tanφ' =	35.5		(if $\phi = 0$ then $N_c = 5.1$)	
	$N_{\gamma} = 2(N_{\varphi})$	+1)tanφ' =	30.2			
$s_c, s_q, s_{\gamma} = dir$		footing shape factors				
	$s_c = 1 + (B/$	$L)(N_c/N_c) =$	1.65			
	$s_q = 1 + (B/$	L)tano' =	1.62			
	$s_{\gamma} = 1-0.40$	B/L) =	0.60			
$\mathbf{d}_{\mathrm{e}},\mathbf{d}_{\mathrm{q}},\mathbf{d}_{\gamma}=\mathbf{d}\mathbf{i}$	mensionles	s footing depth factor	s			
·	k = D/B if	$D/B \le 1$ and $tan^{-1}(D/B)$	B) if D/B	> 1 =	0.13	
	$d_c = 1 + 0.4$	k = 1.05				
	$d_c = 1 + 2k$	$tan\phi' (1-sin\phi')^2 =$		1.04		
	d _v =					
(i, b, and g fa	•	ual 1 for this analysis)			
$\sigma'_{D} = \text{vertical}$	effective st	ress at depth D below	the grou	nd surfa	ace (psf) = 244	
$\gamma' = effective$	unit weight	of soil (pcf)				
$= \gamma - \gamma_w$	$(if D_w \le D)$					
$= \gamma - \gamma_{\mathbf{w}} (1 - (1 - \gamma_{\mathbf{w}}))$	D _w -D)/B)	$(if D \le D_w \le D + B)$				
$=\gamma$	(if $D_w \ge D +$	$-\mathbf{B} \text{ or if } \dot{\phi} = 0)$				
	where:					
		$\gamma_{\mathbf{w}} = \text{unit weight of } \mathbf{w}$	ater (pcf)	-	62.4	
γ' =	122	pcf				
$q_{ult} = 26,115$	psf					
$q_{allow} = gross allowable beautiful and the second sec$	ring pressu	re of foundation soil				
$= q_{ m ult} / m FS$						
where:	0.0.	2.0				
FS = factor o		3.0		Pr. N	٦	
$\mathbf{q_{allow}} = 8,705$	psf	(based on beari	ing capac	ity)		
Settlement Calculations:						
S = foundation settlement						
= $fs*fl*ft*(q'-ov')*(1.71/N)$	1.4 _{*D} 0.7	(Burland and Burbic	las 1085	١		
= is · ii · ii · (q -ov) · (1.77/8 where:)·B	(Bulland and Bulbit	1gc, 1963	,		
	shape fact	or				
		$3)/(L/B+0.25)]^{0.2} =$	1.0			
		factor for the depth of		aravel 1	grier	
	- Correction - Hs/Z _i *(2-I	-	1.0	graveri	ayei	
	time facto	-	1.0			
	= (1+R ₃ +R ₂ ;		1.57	(Generally)	: R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loa	is)
		ross effective applied				,
		previous effective or				
		SPT N-value within E				
		on width (m)=	4.6			
2						
S = 23	mm					
q _{allow} = 3,050	psf	for S <= 25 mm = 1	inch			
THEOR. SACRA	r					

20-foot by 20-foot Square Footing

oil Properties:	For	undation Proper	ties:		Other Parameters:
friction angle, ϕ' or ϕ (deg):	32	wic	lth, B (ft):	20.0	ground inclination, β (deg):
cohesion intercept, c' or c (psf):	0	leng	gth, L (ft):	20.0	depth to groundwater table, D_w (ft):
total unit weight, γ (pcf):	122	embedment dep	th, D (ft):	2.0	applied shear load, V (lbs):
thickness of granular layer (ft):	150	base inclination	, α (deg):	0.0	depth of removed soil over foundation (ft):
earing Capacity Calculations:					
quit = gross ultimate bearing	capacity of fo	undation soil			
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_q s_c$	$_{q}d_{q}i_{q}b_{q}g_{q} + 0.5$	yBN _v s _v d _v i _v b _v g _v			
where:		. , , , , , , , , , , , , , , , , , , ,			
N_c , N_q , $N_\gamma = d$	imensionless b	earing capacity	factors = fu	nction of	soil friction angle
	$N_{\alpha} = e^{\pi tan\phi'} tan$	$^{2}(45+\phi'/2) =$	23.2		
	$N_c = (N_a - 1)/ta$		35.5	((if $\phi = 0$ then $N_c = 5.1$)
	$N_v = 2(N_u + 1)t$		30.2	`	,
	1 1	ing shape factor			
	$s_c = 1 + (B/L)(1$		1.65		
	$s_0 = 1 + (B/L)ta$	4	1.62		
	$s_{y} = 1.0.4 (B/L)$		0.60		
		ting depth facto			
		$3 \le 1$ and $\tan^{-1}(\mathbb{D})$		S 1 = -	0.10
	$d_{x} = 1 + 0.4k =$		מוע זו (פוי	1 =	0.10
	-0				
	$d_q = 1+2k \tan q$		1	.03	
	$d_{\gamma} = 1.00$				
	_	for this analysis	,		
		at depth D below	w the grour	d surface	e (psf) = 244
$\gamma' = \text{effective u}$	_	oil (pci)			
$= \gamma - \gamma_w$ (
, , , , ,		$D < D_w < D+B$			
= γ (if $D_{\mathbf{w}} \ge D + B$ or	$r \text{ if } \phi = 0$			
	where:				
		unit weight of v	vater (pcf)	= 6	2.4
γ'=	122 pcf				
$\mathbf{q}_{\mathbf{ult}} = 31,560$	psf				
q _{allow} = gross allowable bear	ing pressure of	foundation soil			
$= q_{uli} / FS$	<i>.</i>				
where:					
FS = factor of	safety=	3.0			
$\mathbf{q}_{\mathrm{allow}} = 10,520$	psf	(based on bear	ing capaci	y)	
ettlement Calculations:					
S = foundation settlement					
= $fs*fl*ft*(q'-\sigma v')*(1.71/N^1.$	⁴)*B ^{0.7} (Bu	rland and Burbi	dge, 1985)		
where:					
fs≔	shape factor				
==	[(1.25 *L/B)/(L	(B+0.25)] ^{0.2} =	1.0		
		or for the depth		ravel lav	er
	Hs/Z ₁ *(2-Hs/Z		1.0		
	time factor				
	(1+R3+R,*log(t/3)) =	1.57 (0	enerally: R3	=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating load
= ,		//			136 = 2,850 psf
	Average gross	effective applied	pressure (
q'=		effective applied	-	,	
q'= σv'= :	Maximum pre	vious effective o	verburden j	ressure ((kPa) = 117.1
q'= σν'= : N=	Maximum pres Average SPT	vious effective o N-value within I	verburden j	ressure ((kPa) = 117.1
q'= σν'= : N=	Maximum pre	vious effective o N-value within I	verburden j 3 ^{0.7} of the f	ressure ((kPa) = 117.1

for S <= 25 mm = 1 inch

2,850 psf

q_{allow} =

1.5-foot Wide Strip Footing

Soil Properties:	Foundati	on Properties:		Other Parameters:	
friction angle, ϕ' or ϕ (deg):	32	width, B (ft):	1.5	ground inclination, β (deg):	0.0
cohesion intercept, c' or c (psf):	0	length, L (ft):	100.0	depth to groundwater table, D_w (ft):	120
total unit weight, γ (pcf):		dment depth, D (ft):	2.0	applied shear load, V (lbs):	0.0
thickness of granular layer (ft):	150 base	inclination, α (deg):	0.0	depth of removed soil over foundation (ft):	10.0
Bearing Capacity Calculations:					
$q_{ult} = gross ultimate bearing$	capacity of foundati	on soil			
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_q s_q$ where:	$d_{q}i_{q}b_{q}g_{q}+0.5\gamma'BN_{\gamma'}$	$s_{\gamma}d_{\gamma}i_{\gamma}b_{\gamma}g_{\gamma}$			
N_c , N_g , $N_y = di$	mensionless bearing	g capacity factors = f	unction o	f soil friction angle	
	$N_c = e^{\pi t a n \phi'} tan^2 (45 +$	$\phi'/2) = 23.2$			
	$N_c = (N_a - 1)/\tan \phi' =$	35.5		(if $o = 0$ then $N_c = 5.1$)	
	$N_v = 2(N_o + 1) \tan \phi' =$	30.2			
	ensionless footing sl				
	$s_c = 1 + (B/L)(N_c/N_c)$				
	$s_0 = 1 + (B/L) \tan \phi' =$	1.01			
	$s_y = 1-0.4(B/L) =$	0.99			
	ensionless footing				
, ,		and tan (D/B) if D/E	3 > 1 =	0.93	
		1.37	, , ,	0.23	
			1 26		
	$d_q = 1 + 2k \tan \phi' (1 - s)$	inφ') =	1.26		
	$d_{\gamma} = 1.00$	hia anal-mia)			
	tors all equal 1 for t	nts analysis) pth D below the grou	and surfac	ce (psf) = 244	
	nit weight of soil (p		inu suriac	ευ (psi) – 244	
$= \gamma - \gamma_{w} \qquad ($		cij			
	$(D_w \supseteq D)$ (D < D)	< D+R)			
	if D _w ≥ D+B or if ȯ				
- y (where:	- 0)			
		weight of water (pcf) =	62.4	
\mathbf{v}^{ι}	122 pcf	weight or water (per	,		
·	psf				
Hulk 23225	P				
q _{allow} = gross allowable bear	ing pressure of four	dation soi!			
$= \mathbf{q}_{\mathbf{u}\mathbf{k}} / \mathbf{F}\mathbf{S}$					
where:					
FS = factor of	safety =	3.0		_	
$q_{allow} = 3,306$	psf (bas	ed on bearing capa	city)		
				•	
Settlement Calculations:					
S = foundation settlement					
= $fs*fl*ft*(q'-\sigma v')*(1.71/N')$.4)*B ^{0.7} (Burland	l and Burbidge, 1985	5)		
where:					
fs=	shape factor				
=	[(1.25*L/B)/(L/B+0	$[0.25)]^{0.2} = 1.0$			
fl=	correction factor fo	the depth of sand o	r gravel la	ayer	
=	$H_s/Z_l^*(2-H_s/Z_l) =$	1.0			
ft=	time factor				
=	$(1+R_3+R_t*log(t/3))$	= 1.57	(Generally:	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads	ds)
q'=	Average gross effect	tive applied pressure	e(kPa) =	1,580 = 33,000 psf	
	_	effective overburde	-		
	_	lue within B ^{0.7} of the	foundati	ion = 15	
B=	Foundation width	(m)= 0.5			
_					
S = 25	mm				
$q_{\rm allow} = 33,000$	psf for S <=	25 mm = 1 inch			
- ***			•		

5-foot Wide Strip Footing

and the second s		Foundation Propert			Other Parameters:
friction angle, φ' or φ (deg):	32	wid	h, B (ft):	5.0	ground inclination, β (deg):
cohesion intercept, c' or c (psf):		leng	th, L (ft):	100.0	depth to groundwater table, Dw (ft):
total unit weight, γ (pcf):		embedment dept		2.0	applied shear load, V (lbs):
thickness of granular layer (ft):	150	base inclination,	α (deg):	0.0	depth of removed soil over foundation (ft):
aring Capacity Calculations:					
q _{ult} = gross ultimate bearing	capacity of	foundation soil			
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_d s_d$					
where:	q-q-q-q6q	,,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-			
N_c , N_a , $N_v = d$	limensionles	s bearing capacity f	actors = fi	nction o	of soil friction angle
		$\tan^2(45+\phi'/2) =$	23.2		
	$N_c = (N_c-1)$		35.5		(if $\phi = 0$ then $N_c = 5.1$)
	$N_v = 2(N_a +$		30.2		(12 4)
		footing shape factors			
•			1.03		
	$s_c = 1 + (B/I)$				
	$s_q = 1 + (B/I)$		1.03		
	$s_{y} = 1-0.4(I$		0.98		
		footing depth factor			
		$D/B \le 1$ and $tan^{-1}(D/B)$	/B) if D/B	> 1 =	0.40
	$d_c = 1+0.41$	x = 1.16			
	$d_q = 1 + 2k t$	$an\phi' (1-sin\phi')^2 =$		1.11	
	$d_y = 1$.00			
(i, b, and g fac	tors all equa	al 1 for this analysis)		
$\sigma'_{D} = \text{vertical } \epsilon$	effective str	ess at depth D belov	the groun	nd surfac	ce (psf) = 244
y' = effective u	ınit weight	of soil (pcf)			
= γ - γ _w (1	$(if D_w \le D)$				
$= \gamma - \gamma_w (1-(D))$) _w -D)/B)	$(if D < D_w < D+B)$			
= y ($\inf D_w \ge D + 1$	B or if $\phi = 0$)			
,	where:	,			
	γ	w = unit weight of w	ater (pcf)	=	62.4
$\gamma' =$		ocf	4 - 7		
q _{ult} = 15,507	•				
400	Por				
q _{ellow} = gross allowable bear	ring pressure	e of foundation soil			
q_{allow} = gross allowable bears = q_{allo} / FS	ring pressure	e of foundation soil			
$= q_{ult} / FS$	ring pressure	e of foundation soil			
$= q_{ult} / FS$ where:					
$= q_{uh} / FS$ where: $FS = factor of$	safety =	3.0	no canaci	(tv)	
$= q_{uh} / FS$ where: $FS = factor of$			ng capaci	ty)	
$= q_{ult} / FS$ where: $FS = factor of$ $q_{allow} = 5.169$	safety =	3.0	ng capaci	ty)	
$=q_{ult} / FS$ where: $FS = factor of$ $\boxed{q_{allow} = 5,169}$ thement Calculations:	safety =	3.0	ng capaci	ty)	
$=q_{ult} / FS$ where: $FS = factor of$ $\boxed{q_{allow} = \qquad 5,169}$ thement Calculations: $S = foundation settlement$	safety = psf	3.0 (based on beari			
$= q_{ult} / FS$ where: $FS = factor of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1})$	safety = psf	3.0			
$= q_{ult} / FS$ where: $FS = factor \ of$ $q_{allow} = 5,169$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1-\sigma})$ where:	safety = psf *3*B ^{0.7}	3.0 (based on beari			
$=q_{ult} / FS$ where: $FS = factor \ of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*fl*(q'-ov')*(1.71/N^1 \ where:$ $fs=$	safety = psf */*B ^{0.7} shape facto	3.0 (based on beari	dge, 1985)		
$=q_{ult} / FS$ where: $FS = factor \ of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = foundation \ settlement \\ = fs*fl*fl*(q'-ov')*(1.71/N^1 \ where:)$ fs=	safety = psf */*B ^{0.7} shape facto [(1.25*L/B)	3.0 (based on bearing) (Burland and Burbia) (CB) (L/B+0.25)] (L/B+0.25)]	lge, 1985)		
$=q_{ult} / FS$ where: $FS = factor \ of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1 \ where:$ $fs = fl = fl = fl$	safety = psf .4)*B ^{0.7} shape facto [(1.25*L/B) correction i	3.0 (based on bearing) (Burland and Burbing) (L/B+0.25)] ^{0.2} = Factor for the depth of	1.0 of sand or		уст
$=q_{ult} / FS$ where: $FS = factor of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1.$ where: $fs=$ $= fl=$ $= fl=$ $= fl=$	safety = psf)*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H	3.0 (based on bearing) (Burland and Burbing) (L/B+0.25)] ^{0.2} = Factor for the depth of	lge, 1985)		уст
$=q_{ult} / FS$ where: $FS = factor \ of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = \text{foundation settlement}$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1 \text{ where:}}$ $fs = gl = g$	safety = psf .*.)*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H) time factor	3.0 (based on bearing) (Burland and Burbing) (L/B+0.25)] ^{0.2} = Factor for the depth of S/Z_1) =	1.0 of sand or 1.0	gravel la	
$=q_{ult} / FS$ where: $FS = factor \ of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = \text{foundation settlement}$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1 \text{ where:}}$ $fs = gl = g$	safety = psf */y*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H time factor (1+R ₃ +R ₁ *I	(Burland and Burbia (Burland and Burbia $(D/(L/B+0.25)]^{0.2} = 0$ (actor for the depth of $(S/Z_1) = 0$ $(S/Z_1) = 0$	1.0 of sand or 1.0	gravel la	yer R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loan
$=q_{ult} / FS$ where: $FS = factor \ of$ $\boxed{q_{allow} = 5,169}$ thement Calculations: $S = \text{foundation settlement}$ $= fs*fl*fl*(q'-ov')*(1.71/N^1 \text{where:}$ $fs = 6$ $= 6$	safety = psf */y*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H) time factor (1+R ₃ +R ₁ *I Average gro	(Burland and Burbia (Burland and Burbia $D/(L/B+0.25)]^{0.2} = 0$ factor for the depth of S/Z_1) = $OO(t/3)$) = $OO(t/3)$) = $OO(t/3)$ = $OO(t/3$	1.0 of sand or 1.0 1.57 (c) pressure	gravel la Generally: I (kPa) =	R3=0.2, Rt=0.3 for static loads, and R3=0.3, Rt=0.7 for fluctuating load 254 = 5,300 psf
$=q_{ult} / FS$ where: $FS = factor \ of$ $q_{allow} = 5,169$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*ft*(q'-\sigma v')*(1.71/N^1 \ where:$ $fs=$ $=$ $fl=$ $=$ $fl=$ $=$ $q'=$ $\sigma v'=$	safety = psf A)*B ^{0.7} shape factor [(1.25*L/B) correction i Hs/Z ₁ *(2-H time factor (1+R ₃ +R ₁ *) Average gr Maximum	(Burland and Burbic T ($J(L/B+0.25)$) ^{0,2} = Eactor for the depth of $S(Z_1)$ = loss effective applied previous effective or	1.0 of sand or 1.0 1.57 (gravel la Generally: I (kPa) = pressure	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads $254 = 5,300 \text{ psf}$ the (kPa) = 58.4
$=q_{ult} / FS$ where: $FS = factor \ of$ $q_{allow} = 5,169$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*ft*(q'-\sigma v')*(1.71/N^1 \ where:$ $fs=$ $=$ $fl=$ $=$ $fl=$ $=$ $q'=$ $\sigma v'=$	safety = psf A)*B ^{0.7} shape factor [(1.25*L/B) correction i Hs/Z ₁ *(2-H time factor (1+R ₃ +R ₁ *) Average gr Maximum	(Burland and Burbia (Burland and Burbia $D/(L/B+0.25)]^{0.2} = 0$ factor for the depth of S/Z_1) = $OO(t/3)$) = $OO(t/3)$) = $OO(t/3)$ = $OO(t/3$	1.0 of sand or 1.0 1.57 (gravel la Generally: I (kPa) = pressure	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads $254 = 5,300 \text{ psf}$ the (kPa) = 58.4
$=q_{ult} / FS$ where: $FS = factor \ of$ $q_{allow} = 5,169$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1 \text{ where:}$ $fs = 6$ $= 6$	safety = psf */y*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H) time factor (1+R ₃ +R ₁ *I Average gr Maximum Average Si	(Burland and Burbic T ($J(L/B+0.25)$) ^{0,2} = Eactor for the depth of $S(Z_1)$ = loss effective applied previous effective or	1.0 of sand or 1.0 1.57 (gravel la Generally: I (kPa) = pressure	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads $254 = 5,300 \text{ psf}$ the (kPa) = 58.4
$=q_{ult} / FS$ where: $FS = factor \ of$ $q_{allow} = 5,169$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1 \text{ where:}$ $fs = 6$ $= 6$	safety = psf */y*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H) time factor (1+R ₃ +R ₁ *I Average gr Maximum Average Si	(Burland and Burbic Projective applied previous effective over the projective over the previous effective effetit effective effective effective effective effective effective e	1.0 1.57 (pressure verburden 10.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1	gravel la Generally: I (kPa) = pressure	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads $254 = 5,300 \text{ psf}$ the (kPa) = 58.4
$=q_{ult} / FS$ where: $FS = factor \ of$ $q_{allow} = 5,169$ thement Calculations: $S = foundation \ settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^1 \text{ where:}$ $fs = 6$ $= 6$	safety = psf */y*B ^{0.7} shape facto [(1.25*L/B) correction if Hs/Z ₁ *(2-H) time factor (1+R ₃ +R ₁ *I Average gr Maximum Average Si	(Burland and Burbic Projective applied previous effective over the projective over the previous effective effetit effective effective effective effective effective effective e	1.0 1.57 (pressure verburden 10.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1	gravel la Generally: I (kPa) = pressure	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loads $254 = 5,300 \text{ psf}$ the (kPa) = 58.4

10-foot Wide Strip Footing

		undation Propert		10.0	Other Parameters:	0.0
friction angle, \$\phi' or \$\phi\$ (deg)			th, B (ft):	10.0	ground inclination, β (deg):	9.0
cohesion intercept, c' or c (psf)		-	th, L (ft):	100.0 2.0	depth to groundwater table, D _w (ft):	120 0.0
total unit weight, γ (pcf) thickness of granular layer (ft)		embedment dept base inclination,		0.0	applied shear load, V (lbs): depth of removed soil over foundation (ft):	20.0
inickliess of grandial rayer (it)	,. 150	base membation,	a (deg).	0.0	depth of femoved son over foundation (11).	20.0
ng Capacity Calculations:						
q _{ult} = gross ultimate bearin						
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_c$	$\mathbf{s}_{q}\mathbf{d}_{q}\mathbf{i}_{q}\mathbf{b}_{q}\mathbf{g}_{q} + 0.5$	γ'BN _γ s _γ d _γ i _γ b _γ g _γ				
where:					6 46 6	
N_c , N_q , $N_{\gamma} =$				inction of	f soil friction angle	
	$N_q = e^{\pi tan\phi'} tar$		23.2			
	$N_c = (N_q - 1)/ta$	=	35.5		(if $\phi = 0$ then $N_c = 5.1$)	
	$N_{y} = 2(N_{q}+1)$		30.2			
$s_c, s_q, s_y = din$		ting shape factor				
	$s_c = 1 + (B/L)($	$N_{\rm q}/N_{\rm c}) =$	1.07			
	$s_q = 1 + (B/L)t$	ano' =	1.06			
	$s_{y} = 1 - 0.4 (B/I)$.) =	0.96			
$\mathbf{d}_{c},\mathbf{d}_{q},\mathbf{d}_{\gamma}=\mathbf{d}$	imensionless fo	oting depth factor	rs			
	k = D/B if D/C	$B \le 1$ and $tan^{-1}(D$	/B) if D/B	> 1 =	0.20	
	$d_c = 1+0.4k =$	1.08				
	$d_{c} = 1 + 2k \tan \theta$	$\phi' (1-\sin\phi')^2 =$		1.06		
	$d_{y} = 1.0$					
(i, b, and g fr		for this analysis	(;			
	-	s at depth D below		nd surfac	ce (psf) = 244	
_	unit weight of	-	J		4 /	
	$(if D_w \leq D)$	- /				
		$D < D_w < D+B$				
= y	$(if D_w \ge D + B)$					
,	where:	,				
	γ	= unit weight of v	vater (pcf	=	62.4	
y' :			• •			
$q_{uit} = 24,034$	psf					
	-					
q _{allow} = gross allowable be	aring pressure o	of foundation soil				
$= q_{\alpha h} / FS$						
where:						
***************************************	C C	3.0				
FS = factor of	or sarety =	3.0				
FS = factor o	psf	(based on bear	ing capac	ity)		
FS = factor of			ing capac	ity)		
FS = factor o			ing capac	ity)		
FS = factor of the factor of	psf		ing capac	ity)		
$\frac{FS = factor o}{q_{allow} = 8,011}$ ment Calculations:	psf			,		
FS = factor of the factor of	psf	(based on bear		,		
FS = factor of $q_{allow} = 8.011$ ment Calculations: $S = foundation settlement$ $= fs*fl*ft*(q'-ov)*(1.71/t)$ where:	psf	(based on bear		,		
FS = factor of $q_{allow} = 8_{3}011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov)*(1.71/1) where:	psf N ^{1,4})*B ^{0,7} (E = shape factor	(based on bear		,		
FS = factor of $q_{allow} = 8_{3}011$ ment Calculations: $S = \text{foundation settlement}$ $= fs*fl*ft*(q'-\sigma v')*(1.71/t)$ where:	psf N ^{±4})*B ^{0.7} (E = shape factor = [(1.25*L/B)/(6)]	(based on bear turland and Burbi $L/B+0.25$) $ ^{0.2} =$	dge, 1985)	ıver	
FS = factor of $q_{allow} = 8.011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov)*(1.71/n where: fs	psf N ^{1.4})*B ^{0.7} (E = shape factor = [(1.25*L/B)/(= correction fac	(based on bear surland and Burbin $L/B+0.25$)] ^{0.2} = stor for the depth	dge, 1985)	ıyer	
FS = factor of $q_{allow} = 8_{3}011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov)*(1.71/t) where: fs	psf N ^{±4})*B ^{0.7} (E = shape factor = [(1.25*L/B)/(6)]	(based on bear surland and Burbin $L/B+0.25$)] ^{0.2} = stor for the depth	dge, 1985 1.0 of sand or)	ıyer	
FS = factor of $q_{allow} = 8.011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov')*(1.71/1) where: fs ft	psf N ^{i,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac = Hs/Z _i *(2-Hs/. = time factor	(based on bear turland and Burbi L/B+0.25)] ^{0.2} = ctor for the depth Z_1) =	1.0 of sand or 1.0) gravel la		ds)
FS = factor of $q_{allow} = 8,011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov')*(1.71/1) where: fs ft	psf N ^{i,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac = Hs/Z _i *(2-Hs/. = time factor = (1+R ₃ +R _. *log	(based on bear turland and Burbi L/B+0.25)] ^{0.2} = ctor for the depth Z_1) =	1.0 of sand or 1.0	gravel la	nyer R3=0.2, RI=0.3 for static londs, and R3=0.8, RI=0.7 for fluctuating loa 168 = 3,500 psf	
FS = factor of $q_{allow} = 8,011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov')*(1.71/1) where: fs ft q^{t-1}	psf N ^{1,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac Hs/Z _i *(2-Hs/, = time factor = (1+R ₃ +R ₂ *log = Average gros	(based on bear turland and Burbi L/B+0.25)] ^{0.2} = ctor for the depth Z_1) = g(t/3)) =	1.0 of sand or 1.0 1.57 d pressure	gravel la (Generally: 1 (kPa) =	R3=0.2, Rt=0.3 for static leads, and R3=0.8, Rt=0.7 for fluctuating loa $168 = 3,500 \text{ psf}$	
$FS = factor of qallow = 8,011$ $ment Calculations:$ $S = foundation settlement$ $= fs*fl*ft*(q'-\sigma v')*(1.71/t')$ $where:$ fs ft $q'=$ $\sigma v'$	psf N ^{1,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac = Hs/Z ₁ *(2-Hs/, = time factor = (1+R ₃ +R ₂ *log = Average gros = Maximum pr	(based on bear turland and Burbi L/B+0.25)] ^{0.2} = tor for the depth Z_1) = g(t/3)) = s effective applie evious effective of	1.0 of sand or 1.0 1.57 d pressure	gravel la (Generally: 1 (kPa) =	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loa $168 = 3,500 \text{ psf}$ e (kPa) = 116.8	
FS = factor of $q_{allow} = 8,011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov')*(1.71/1) where: fs ft q'= ov' N	psf N ^{1,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac Hs/Z *(2-Hs/, = time factor = (1+R ₃ +R _* *log = Average gros = Maximum pr = Average SP	(based on bear durland and Burbin L/B+0.25)] $^{0.2}$ = extent for the depth Z_1) = $g(t/3)$) = $g(t/3)$ =	1.0 of sand or 1.0 1.57 d pressure overburder B ^{0,7} of the	gravel la (Generally: 1 (kPa) =	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loa $168 = 3,500 \text{ psf}$ e (kPa) = 116.8	
FS = factor of $q_{allow} = 8,011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov')*(1.71/1) where: fs ft q'= ov' N	psf N ^{1,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac = Hs/Z ₁ *(2-Hs/, = time factor = (1+R ₃ +R ₂ *log = Average gros = Maximum pr	(based on bear durland and Burbin L/B+0.25)] $^{0.2}$ = extent for the depth Z_1) = $g(t/3)$) = $g(t/3)$ =	1.0 of sand or 1.0 1.57 d pressure	gravel la (Generally: 1 (kPa) =	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loa $168 = 3,500 \text{ psf}$ e (kPa) = 116.8	
FS = factor of $q_{allow} = 8,011$ ment Calculations: S = foundation settlement = fs*fl*ft*(q'-ov')*(1.71/1) where: fs ft q'= ov' N	psf N ^{1,4})*B ^{0,7} (E = shape factor = [(1.25*L/B)/(= correction fac Hs/Z *(2-Hs/, = time factor = (1+R ₃ +R _* *log = Average gros = Maximum pr = Average SP	(based on bear durland and Burbin L/B+0.25)] $^{0.2}$ = extent for the depth Z_1) = $g(t/3)$) = $g(t/3)$ =	1.0 of sand or 1.0 1.57 d pressure overburder B ^{0,7} of the	gravel la (Generally: 1 (kPa) =	R3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loa $168 = 3,500 \text{ psf}$ e (kPa) = 116.8	

15-foot Wide Strip Footing

		undation Proper			Other Parameters:
friction angle, ϕ' or ϕ (deg):	32	wid	th, B (ft):	15.0	ground inclination, β (deg):
cohesion intercept, c' or c (psf):	0	leng	th, L (ft):	100.0	depth to groundwater table, D_w (ft):
total unit weight, γ (pcf):	122	embedment dept		2.0	applied shear load, V (lbs):
thickness of granular layer (ft):	150	base inclination	, α (deg):	0.0	depth of removed soil over foundation (ft):
ng Capacity Calculations:					
quit = gross ultimate bearing	capacity of fo	oundation soil			
$= c'N_c s_c d_c i_c b_c g_c + \sigma'_D N_q s_q$	$_{1}d_{q}i_{q}b_{q}g_{q}+0.5$	ōγ'BN.,s,d,i,b,g,			
where:					
N_c , N_q , $N_{\gamma} = di$	imensionless	bearing capacity f	factors = fi	nction o	f soil friction angle
	$N_q = e^{\pi tan\phi'} tan$	$n^2(45+\phi/2) =$	23.2		
	$N_c = (N_q - 1)/ta$	anφ' =	35.5		(if $\phi = 0$ then $N_c = 5.1$)
	$N_y = 2(N_q + 1)$		30.2		
$s_c, s_q, s_{\gamma} = dime$	ensionless foo	ting shape factor	s		
	$s_c = 1 + (B/L)($	$N_q/N_c) =$	1.10		
	$s_q = 1 + (B/L)t$	anφ' =	1.09		
	$s_{\gamma} = 1-0.4(B/I)$	_) =	0.94		
		oting depth factor	rs		
	k = D/B if D/B	$B \le 1$ and $tan^{-1}(D$	/B) if D/B	> 1 =	0.13
	$d_c = 1 + 0.4k =$	1.05	ĺ		
	$d_q = 1+2k \tan \theta$	$\phi'(1-\sin\phi')^2 =$.04	
	$\mathbf{d}_{v} = 1.0$,	
		1 for this analysis	a		
		s at depth D below		nd surfac	ee (psf) = 244
$\gamma' = effective u$					4 /
· ·	$if D_{w} \leq D$	* /			
$= \gamma - \gamma_w (1-(D))$	w-D)/B) (if	$D < D_w < D + B)$			
	if D _w ≥ D+B o				
	where:				
	γ _w =	unit weight of w	vater (pcf)	=	62.4
$\gamma^{\epsilon} =$	122 pcf	•			
	e				
	psf				
$q_{ult} = 32,401$					
$q_{ult} = 32,401$ $q_{allow} = gross allowable bearing quality q_{allow} = gross allowable growth growth$		f foundation soil			
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{ult} / FS$		f foundation soil			
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{ult} / FS$ where:	ing pressure o				
$q_{ult} = 32,401$ $q_{allow} = gross allowable bears = q_{ult} / FS$ where: $FS = factor of s$	ing pressure o	3.0			
$q_{ult} = 32,401$ $q_{allow} = gross allowable bears = q_{ult} / FS$ where: $FS = factor of S$	ing pressure o		ing capaci	ty)	
$\begin{aligned} q_{ult} &= 32,401 \\ q_{allow} &= \text{gross allowable bear} \\ &= q_{ul} / \text{FS} \\ &= q_{ul} / \text{FS} \\ &= 10,800 \end{aligned}$	ing pressure o	3.0	ing capaci	ty)	
$q_{ult} = 32,401$ $q_{allow} = gross allowable bears = q_{ult} / FS$ where: $FS = factor of s$	ing pressure o	3.0	ing capaci	ty)	
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{uli} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$	ing pressure o	3.0 (based on bear		ty)	
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{uli} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N]^{1/s}$	ing pressure o	3.0		ty)	
$\begin{aligned} q_{ult} &= & 32,401 \\ q_{allow} &= & \text{gross allowable bear} \\ &= & q_{ult} / FS \\ & \text{where:} \\ &FS &= & \text{factor of s} \\ \hline q_{allow} &= & 10,800 \\ &\\ &\text{ment Calculations:} \\ S &= & \text{foundation settlement} \\ &= & fs*fl*fl*(q'-ov')*(1.71/N^{1/2}) \\ &&\text{where:} \end{aligned}$	ing pressure o safety = psf 4)*B ^{0.7} (B	3.0 (based on bear		ty)	
$\begin{aligned} q_{ult} &= 32,401 \\ q_{allow} &= \text{gross allowable bear} \\ &= q_{ul} \ / \ FS \\ & \text{where:} \\ & FS = \text{factor of s} \end{aligned}$ $\begin{aligned} q_{allow} &= 10,800 \\ q_{allow} &= 10,800 \end{aligned}$ ment Calculations: $S = \text{foundation settlement} \\ &= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/2}) \\ & \text{where:} \end{aligned}$	ing pressure of safety = psf 4)*B ^{0.7} (B	3.0 (based on bear urland and Burbie	dge, 1985)	ty)	
$\begin{aligned} q_{ult} &= 32,401 \\ q_{allow} &= \text{gross allowable bear} \\ &= q_{ul} / \text{FS} \\ &= q_{ul} / \text{FS} \\ &= 10,800 \end{aligned}$ $\begin{aligned} q_{allow} &= 10,800 \\ q_{allow} &= 10,800 \end{aligned}$ ment Calculations: $S &= \text{foundation settlement} \\ &= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/\alpha} \text{ where:} \end{aligned}$ $fs &= 0$	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(1.25*L/B	3.0 (based on bear) urland and Burbic L/B+0.25)] ^{0.2} =	dge, 1985)		- Nov
$\begin{array}{ll} q_{ult} = & 32,401 \\ q_{allow} = & gross \ allowable \ beari\\ = & q_{ul} \ / \ FS \\ & where: \\ FS = & factor \ of \ s \\ \hline q_{allow} = & 10,800 \\ \hline \end{array}$ where: $S = & foundations \ settlement \\ = & fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/\alpha}) \\ & where: \\ fs = & fl = fl \\ \hline \end{array}$	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/() correction fac	3.0 (based on bearing) urland and Burbin L/B+0.25)] ^{0.2} = tor for the depth of	1.0 of sand or		y er
$\begin{array}{ll} q_{ult} = & 32,401 \\ q_{allow} = & gross \ allowable \ beari \\ = & q_{ul} \ / \ FS \\ & where: \\ FS = & factor \ of \ s \\ \hline q_{allow} = & 10,800 \\ \hline \end{array}$	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(1.25*L/B	3.0 (based on bearing) urland and Burbin L/B+0.25)] ^{0.2} = tor for the depth of	dge, 1985)		yer
$\begin{array}{ll} q_{ult} = & 32,401 \\ q_{allow} = & gross \ allowable \ beari \\ = & q_{ul} \ / \ FS \\ & where: \\ FS = & factor \ of \ s \\ \hline q_{allow} = & 10,800 \\ \hline \end{array}$ where: $S = & foundations: \\ S = & foundation \ settlement \\ = & fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/2}) \\ & where: \\ fs = & fl =$	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(1.25*L/B	3.0 (based on bearing) urland and Burbie L/B+0.25)] ^{0.2} = tor for the depth of Z_1) =	1.0 of sand or 1.0	gravel la	
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{uli} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma')^*(1.71/N^{1/N})^*$ where: $fs = s$ $f = s$ $f = s$ $f = s$ $f = s$	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(i correction fac Hs/Z ₁ *(2-Hs/Z time factor (1+R ₃ +R ₁ *log	3.0 (based on bear) urland and Burbie L/B+0.25)] ^{0.2} = tor for the depth of th	1.0 of sand or 1.0	gravel la	X3=0.2, Rt=0.3 for static loads, and R3=0.8, Rt=0.7 for fluctuating loa
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{ult} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-ov')*(1.71/N'^1/N'^1/N'^1/N'^1/N'^1/N'^1/N'^1/N'^$	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/() correction fac ths/Z ₁ *(2-Hs/2 time factor (1+R ₃ +R ₁ *log Average gross	3.0 (based on bear) urland and Burbin L/B+0.25)] ^{0.2} = tor for the depth of th	1.0 of sand or 1.0 1.57 (eld pressure)	gravel lag	R3=0.2, Rt=0.3 fur static loads, and R3=0.8, Rt=0.7 for fluctuating load $R3=0.8$, Rt=0.7 for fluctuating $R3=0.8$, Rt=0.7
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari = q_{ult} / FS$ where: FS = factor of s $q_{allow} = 10,800$ ment Calculations: S = foundation settlement = fs*fl*fl*(q'-\sigma')'*(1.71/\N^1/\sigma')'* (1.71/\N^1/\sigma')'* (1.71/\Sigma')'*	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(1.25*L/B	3.0 (based on bear) urland and Burbie L/B+0.25)] ^{0.2} = tor for the depth of th	1.0 of sand or ; 1.0 1.57 (eld pressure everburden	gravel la Generally: R (kPa) = pressure	23-0.2, Rt=0.3 fur static loads, and R3-0.8, Rt=0.7 for fluctuating loads and
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{ult} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/\sigma}) where: fs = fl = $	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(i.correction fac ths/Z _i *(2-Hs/Z time factor (1+R ₃ +R _i *log Average gross Maximum pre Average SPT	3.0 (based on bear) urland and Burbie L/B+0.25)] ^{0.2} = tor for the depth of th	1.0 of sand or ; 1.0 1.57 (eld pressure everburden 100.7 of the 100.7	gravel la Generally: R (kPa) = pressure	23-0.2, Rt=0.3 fur static loads, and R3-0.8, Rt=0.7 for fluctuating loads and
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{ult} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/\sigma}) where: fs = fl = $	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(1.25*L/B	3.0 (based on bear) urland and Burbie L/B+0.25)] ^{0.2} = tor for the depth of th	1.0 of sand or ; 1.0 1.57 (eld pressure everburden	gravel la Generally: R (kPa) = pressure	23-0.2, Rt=0.3 fur static loads, and R3-0.8, Rt=0.7 for fluctuating loads and
$q_{ult} = 32,401$ $q_{allow} = gross allowable beari$ $= q_{ult} / FS$ where: $FS = factor of s$ $q_{allow} = 10,800$ ment Calculations: $S = foundation settlement$ $= fs*fl*fl*(q'-\sigma v')*(1.71/N^{1/\sigma}) where: fs = fl = $	ing pressure of safety = psf 4)*B ^{0.7} (B shape factor [(1.25*L/B)/(i.correction fac ths/Z _i *(2-Hs/Z time factor (1+R ₃ +R _i *log Average gross Maximum pre Average SPT	3.0 (based on bear) urland and Burbie L/B+0.25)] ^{0.2} = tor for the depth of th	1.0 of sand or ; 1.0 1.57 (eld pressure everburden 100.7 of the 100.7	gravel la Generally: R (kPa) = pressure	23-0.2, Rt=0.3 fur static loads, and R3-0.8, Rt=0.7 for fluctuating loads and

ATTACHMENT D GEOTECHNICAL LABORATORY TEST RESULTS

RECEIVED

MAR 12 2013

March 7, 2013

GOLDER ASSOCIATES INC.
IRVINE, CALIFORNIA

Phone / Fax: (562) 690-3737

Golder Associates Inc. 230 Commerce, Suite 200 Irvine, CA 92602

Attention: Mr. Jaime Bueno

SUBJECT:

Laboratory Test Results

Golder Project Name: Townscope Sunset

Golder Project No.: 123-92034 HAI Project No.: GLDL-13-003

Dear Mr. Bueno:

Enclosed are the results of the laboratory testing conducted on samples from the above referenced project. The testing was conducted in general accordance with the following test procedures:

Type of Test	Test Procedure
Moisture Content and Dry Density	ASTM D2937
Modified Proctor Compaction	ASTM D1557
R Value	CTM 301
Particle-Size Analysis	ASTM D422

Attached are: Summary of Laboratory Test Results, four (4) Moisture Content and Dry Density tests, two (2) Modified Proctor Compaction tests, two (2) R Value tests, and thirteen (13) Particle-Size Analysis tests.

We appreciate the opportunity to provide our testing services to Golder Associates Inc. If you have any questions regarding these test results, please contact us.

Sincerely,

HUSHMAND ASSOCIATES, INC.

Jorge Turbay, MS, PE Senior Project Engineer

SUMMARY OF LABORATORY TEST RESULTS

Client: Project Name: Project No.:

Golder Associates Inc. Townscope Sunset 123-92034

HAI Project No: GLDL-13-003 Performed by: JT Date: 3/7/2013

					Modified (ASTM	Modified Proctor (ASTM D1857)				Part	Particle-size Analysis of Solis (ASTM D422) (Percent Passing)	Analysis	Analysis of Soils (Percent Passing)	(ASTIM (0422)		
Boring No.	Sample No.	Depth	in-situ Moisture Content (%)	In-situ Dny Density (pcf)	Optimum Moisture Content (%)	Maximu m Dry Density (pcf)	R Value (CTM 301)	1 1/2 =	345	. 88	7	94.10	% **	4.	8	# 100	# 200
	Bulk 1	11.5-15						100.0	98.5	96.8	92.6	77.4	51.9	34.5	24.1	17.5	11.7
B-404	Bulk 2	26.5-30			7.8	136.0	71		100.0	99.4	96.1	79.8	59.4	44.9	35.9	29.4	22.1
	MC-1	8	5.4	117.3						100.0	97.5	83.8	59.6	38.4	25.0	17.0	10.6
	MC-2	9	10.2	124.1					100.0	99.1	96.2	82.2	64.0	50.2	40.8	32.5	25.0
	<u>2</u>	w							100.0	89.2	82.8	2. 7.	39.5	23.4	15.1	10.6	6.8
R-102	\$-5	K							100.0	98.6	95.9	77.4	53.7	37.5	26.9	18.8	17.1
	MC-1	8	3.7	111.8					100.0	98.2	94.6	73.8	42.9	24.6	14.9	9.4	5.4
	2-2	40								100.0	0.66	86.7	57.6	32.2	18.6	11.8	7.4
	S-2	10								100.0	5.76	82.0	56.2	37.1	25.2	18.1	12.0
B-103	S-3	15							100.0	2.66	98.5	87.6	71.0	57.6	46.7	37.4	25.6
	MC-1	8	4.0	109.2					100.0	99.5	98.2	82.7	57.3	35.2	20.4	11.9	6.5
B-104	Bulk 1	21.5-25	•		0.7	134.1	ങ	100.0	99.3	98.3	93.2	67.7	43.9	29.9	21.6	16.0	11.1
	S-7	8							100.0	98.6	95.7	80.0	63.6	51.9	41.7	33.2	23.1

LEAST HUSHINAND ASSOCIATES INC.

MOISTURE CONTENT AND DRY DENSITY OF RING SAMPLES

Client: Golder Associates Inc. Project Name: Townscope Sunset Project No.: 123-92034

HAI Project No.: GLDL-13-003
Performed by: KL/PM
Checked by: JT
Date: 3/5/2013

Boring No.	No.		B-	B-101	B-102	B-103	
Sample No.	e No.		MC-1	MC-2	MC-1	MC-1	_
Depth (ft)	(ft)		30	40	30	20	
Totalw	Total wt of rings and soil	gr	581.20	1257.39	922.91	908.86	
Height	Height of sample	in	က	9	2	ည	
Diamet	Diameter of sample	Ë	2.416	2.416	2.416	2.416	
Volume	Volume of sample	cu.ft	0.0080	0.0159	0.0133	0.0133	
Weight	Weight of rings	gr	135.09	270.19	225.15	225.15	
Weight of soil	of soil	lbs.	0.983	2.176	1.538	1.507	
Wet Density	nsity	bct	123.6	136.7	116.0	113.6	
Container No	er No.		8	85	88	92	
Weight	Neight of cont.+ wet soil	gr	390.94	549.91	407.83	414.85	
Weight	Neight of cont. + dry soil	gr	371.39	499.84	393.50	399.06	
Weight	Weight of container	g	8.37	8.45	8.36	8.30	
Weight	Weight of water	ğ	19.55	50.07	14.33	15.79	
Weight	Neight of dry soil	gr	363.02	491.39	385.14	390.76	
Moistu	Moisture Content	%	5.4	10.2	3.7	4.0	
Dry Density	ısity	pcf	117.3	124.1	111.8	109.2	

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

COMPACTION CURVE (ASTM D1557)

Client:

Golder Associates Inc.

Brown, Silty Sand (SM)

Project Name:

Townscope Sunset

Project No.:

Soil Description:

123-92034

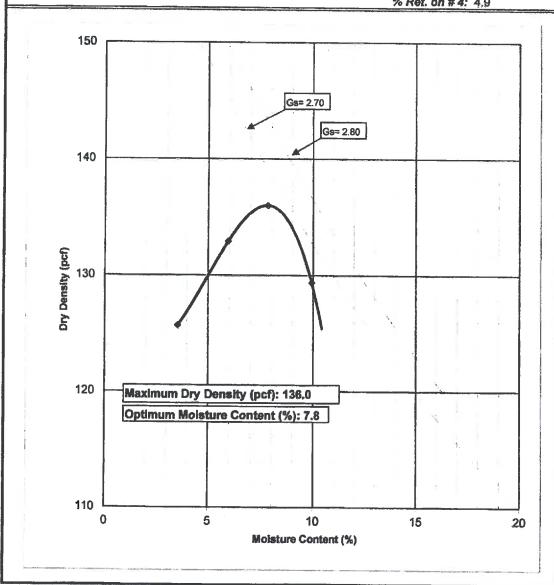
Boring No: Sample No.: B-101 Bulk 2

Depth:

26.5-30'

HAI Project No.: GLDL-13-003

Tested by: KL/PM


Checked by: JT

Date: 3/5/2013

Mold size: 4 in

Procedure: A

% Ret. on # 4: 4,9

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

COMPACTION CURVE (ASTM D1557)

Client:

Golder Associates Inc.

Project Name:

Townscope Sunset

Project No.:

123-92034

Boring No:

B-104

Sample No.:

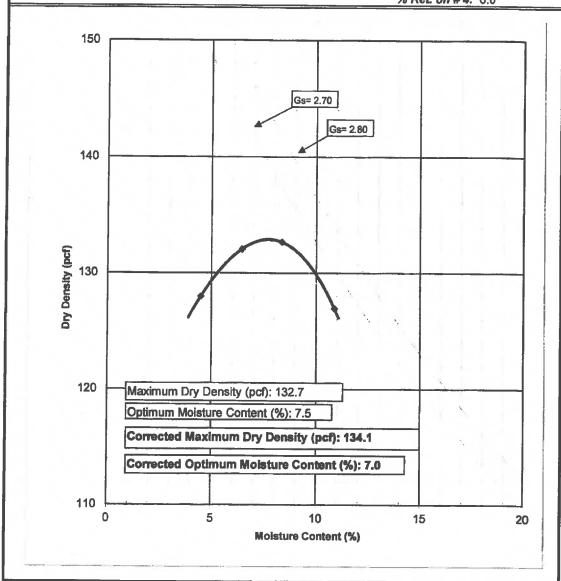
Bulk 1

Depth: 21.5-25

Soil Description:

Brown, Well-Graded Sand with Silt (SW-SM)

HAI Project No.: GLDL-13-003


Tested by: KL/PM

Checked by: JT

Date: 3/5/2013

Mold size: 4 in Procedure: A

% Ret. on # 4: 6.8

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

Golder Associates Inc. Townscope Sunset

123-92034

Project Name: Project No.:

Client:

PARTICLE-SIZE ANALYSIS OF SOILS (ASTM D422)

HAI Project No.: GLDL-13-003 Tested by: KL/PM

Checked by: JT

Date: 3/5/2013

				100	8	8	2	8	22	40	30	20	9	78
			4π.	-		-								
>	ξ													_
VI T AND CLAY	3													
7 112														- 6
		Si	0											
		U.S. STANDARD SIEVE SIZES	200									月 /	?	7
	Fine	D SIEV	60 100							2	,	9		
	-	VDAR	6- 0-								1	-		
Q	m	STAI	29											
SAND	Mediu	U.S	M				,,,,							7
	736		₽-			1								
	Coarse		4	-8	4			-+						-
	Fine		3/8	<i>#</i>										- - - - -
GRAVEL			3,4"											
GR	Coarse		بن-ر											
COBBLES) 		e) -						J					İş

Percent Passing

% Fines

% Sand 81.0 73.0

% Gravel 7.4 4.9

Brown, Well-Graded Sand with Silt (SW-SM)

Brown, Silty Sand (SM)

0 0

USCS

Symbol

Depth (ft) 11.5-15 26.5-30

Sample No. Bulk 1 **Bulk 2**

Boring No.

B-101

11.7 22.1

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

Cllent:

Golder Associates Inc. Townscope Sunset Project Name:

123-92034

Project No.:

(ASTM D422)

PARTICLE-SIZE ANALYSIS OF SOILS

HAI Project No.: GLDL-13-003 Tested by: KL/PM

Checked by: JT

Date: 3/5/2013

			2п									0.00
	SILI AND CLAY											0.01
	9	SIEVE SIZES	100 200	1						9	7	0.1
SAND	Medium Fine	U.S. STANDARD SIEVE SIZES	20 40 60				<i>y</i>	8	0			-
	Coarse		10		6							
GRAVEL	Fine		3/4" "3/8									10
5	Coarse		بِنَ									
COBBLES			<u></u>				 					90

Percent Passing

% Fines

% Sand

% Gravel

10.6 25.0

71.2

3.8

Brown, Well-Graded Sand with Silt (SW-SM)

Brown, Clayey Sand (SC)

USCS

Symbol

Depth (ft)

Sample

Boring No.

0

8 4

MC-2 MC-1 S S

B-101

HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

Client: Project Name:

Project No.:

PARTICLE-SIZE ANALYSIS OF SOILS

(ASTM D422)

HAI Project No.: GLDL-13-003

Date: 3/5/2013 Tested by: KL/PM Checked by: JT Golder Associates Inc. Townscope Sunset 123-92034

Percent Passing

Boring No.	Sample No.	Depth (ft)	Symbol	nscs	% Gravel % Sand % Fines	% Sand	% Fines
B.402	S-1	5	0	Brown, Well-Graded Sand with Silt and Gravel (SW-SM)	17.2	76.1	6.8
7	S-5	25		Brown, Well-Graded Sand with Silt (SW-SM)	4.1	84.7	£

HUSHMAND ASSOCIATES. INC. Geotochnical and Earthquake Engineers

Golder Associates Inc. Townscope Sunset 123-92034 Project Name: Project No.:

Cllent:

PARTICLE-SIZE ANALYSIS OF SOILS

(ASTM D422)

Checked by: JT

Date: 3/5/2013

HAI Project No.: GLDL-13-003 Tested by: KL/PM

SILT AND CLAY Fine SAND Medium Coarse Fine GRAVEL Coarse COBBLES

Percent Passing 100 8 8 2 8 20 9 20 4 8 0 0.001 2 L 0.01 U.S. STANDARD SIEVE SIZES 0.1 6- 09 - 9 <u>.</u>.

8					Grain size (mm)			
30 O Brown, Well-Graded Sand with Silt (SW-SM) 5.4	Soring No.	Sample No.		Symbol	nscs	% Gravel	% Sand	% Fines
40 Brown, Well-Graded Sand with Silt (SW-SM)	0 400	MC-1	30	0	Brown, Well-Graded Sand with Silt (SW-SM)	7	000	
40 Brown, Well-Graded Sand with Silt (SW-SM)	701-0					5.0	2.00	4.0
		2-2	40		Brown, Weil-Graded Sand with Silt (SW-SM)	1.0	917	7.4

HASHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

Golder Associates Inc. Townscope Sunset

123-92034

Project No.:

Client: Project Name:

PARTICLE-SIZE ANALYSIS OF SOILS (ASTM D422)

HAI Project No.: GLDL-13-003 Tested by: KL/PM

Checked by: JT

Date: 3/5/2013

			2 n	100	8	08		2	89	99	40	93	5 5	P (0.001
SII T AND C! AV	טובו אווים כבאו														0.01
ind rawning		U.S. STANDARD SIEVE SIZES	100 200									-39	9	-a- /	0.1
	Fine	IRD SIE	90 19			+				E		,6,			
Q		STANDA	6-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	./	185				
SAND	Medium	U.S.	20				1		350						-
	Coarse		5-	,											
	Fine		3/8												10
GRAVEL	36		***												
	Coarse														-
COBBLES					1										100

Percent Passing

% Fines

% Sand 85.5 72.9 91.7

% Gravel 2.5 1.5 ل 60

USCS

Symbol

Depth (ft)

Sample

Boring No.

S-2 S-3

12.0 25.6 6.5

Brown, Clayey Sand (SC)
Brown, Well-Graded Sand with Silt (SW-SM)

Brown, Silty Sand (SM)

0 0 4

5 5 8

B-103

MC-1

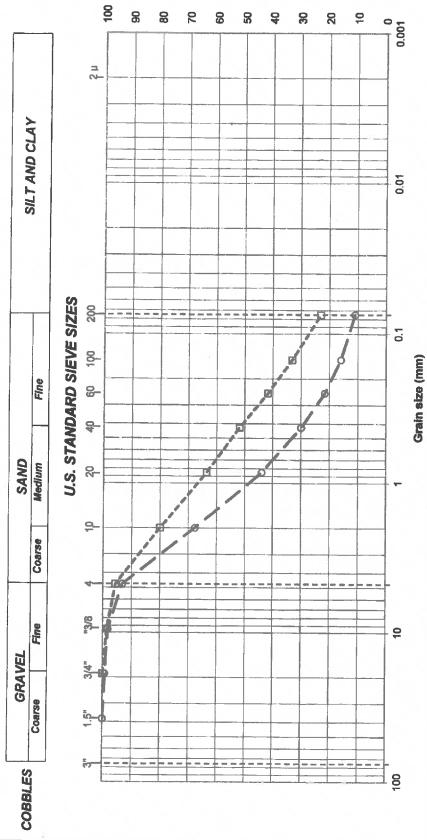
HAT HUSHMAND ASSOCIATES, INC. Geotechnical and Earthquake Engineers

PARTICLE-SIZE ANALYSIS OF SOILS

(ASTM D422)

Golder Associates Inc.

Townscope Sunset Project Name:


Client:

123-92034

Project No.:

Date: 3/5/2013

GLDL-13-003	KL/PM	J	
HAI Project No.:	Tested by:	Checked by:	
ن ا			

Percent Passing

Boring No.	Sample No.	Depth (ft)	Symbol	nscs	% Gravel % Sand % Fines	% Sand	% Fines
B-404	Bulk 1	21.5-25	0	Brown, Well-Graded Sand with Silt (SW-SM)	6.8	82.1	11.1
	S-7	40	0	Brown, Silty Sand (SM)	6.4	72.6	23.1

PROFESSIONAL PAVEMENT ENGINEER

A CALIFORNIA CORPORATION

March 1, 2013

Mr. Peter Moore Hushmand Associates 250 Goddard Irvine, California 92618

Dear Mr. Moore:

Fax: (949) 777-1276 Project No. 38571

Testing of the bulk soil samples delivered to our laboratory on 2/27/2013 has been completed.

Reference:

GLDL-13-003

Project Name:

GOLDER- Townscape Sunset B-101 @ 26.5"- 30.0" (T.I. 4.0)

Sample:

B-104 @ 21.5"- 25.0" (T.I. 4.0)

Data sheets are attached for your use and file. Any untested portion of the sample will be retained for a period of 60 days prior to disposal. The opportunity to be of service is sincerely appreciated and should you have any questions, kindly call.

Respectfully Submitted,

Steven R. Marvin RCE 30659

SRM:tw

R-VALUE DATA SHEET

P.N. GLDL-13-003 Golder Townscape

PROJECT NUMBER	38571		BOI	RING		er Townso 1 @ 26.5"				
SAMPLE DESCRIPTION:	Brown	Silty S	and							
Item					SPECIMEN					
			а		b	С				
Mold Number					3	4				
Water added, grams			7 5		100	86				
Initial Test Water, %			3.5		10.6	9.4				
Compact Gage Pressure,ps	<u>i </u>	3	350		95	230				
Exudation Pressure, psi		6	323		209	361				
Height Sample, Inches		2	2.62		2.59	2.58				
Gross Weight Mold, grams		3	155		3162	3153	3			
Tare Weight Mold, grams		1	965		1977	1977	,			
Sample Wet Weight, grams		1	190		1185	1176				
Expansion, Inches x 10exp-	4	1	0		4	5				
Stability 2,000 lbs (160psi)		1	4 /	26	16 / 29	15 /	27			
Turns Displacement		4	.74		5.45	5.40				
R-Value Uncorrected		7	'3		67	70				
R-Value Corrected		7	5		69	72				
Dry Density, pcf		1	26.8		125.3	126.2				
			DE	SIGN						
Traffic Index Ass	sumed:	4.0			4.0	4.0				
G.E. by Stability		0.26			0.32	0.29				
G. E. by Expansion		0.33			0.13	0.17				
		71	E	Exami	ned & Checked:	3 /1/	13			
Equilibrium R-Value		by			The second secon					
	EXU	JDATION			PROFESSIO.					
				R. Mad						
Gf =	1.25					E				
	Retaine	ed on t	he		C 39559					
REMARKS: 3/4" S		JG 011 L			100	/x				
				/	Steven R Malevin	186 € 306	359			
The data above is based upo	on proc	essing	and	testin			the			

The data above is based upon processing and testing samples as received from the field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301.

Lakelle • Marvin

R-VALUE GRAPHICAL PRESENTATION

PROJECT NO. 385.71 P.N. GLDL-13-003 BORING NO. 8-101 @ 26.5" 30.0" Colder Teamson Sunset DATE 3/1/13 TRAFFIC INDEX ASSUME 4. O R-VALUE BY EXPANSION R-VALUE BY EXPANSION	WOUSTURE AT FABRICATION
800 700 600 500 400 300 200 100 100 90 14 15 16 17 17 18 18 18 18 18 18 18 18	4.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2
R-VALUE vs. EXUD. EXUD. EXPAN.	
REMARKS	GF-1.25

R-VALUE DATA SHEET

P.N. GLDL-13-003 Golder Townscape PROJECT NUMBER 38571 BORING NUMBER: B-104 @ 21.5"-25.0" SAMPLE DESCRIPTION: Brown Sandy Silt ltem **SPECIMEN** a b Mold Number 7 8 9 Water added, grams 80 60 51 Initial Test Water, % 9.9 8.2 7.4 Compact Gage Pressure, psi 60 165 240 Exudation Pressure, psi 179 370 772 Height Sample, Inches 2.64 2.62 2.49 Gross Weight Mold, grams 3184 3180 2951 Tare Weight Mold, grams 1968 1964 1789 Sample Wet Weight, grams 1216 1216 1162 Expansion, Inches x 10exp-4 9 14 24 Stability 2,000 lbs (160psi) 33 / 71 18 / 37 15 / 25 Turns Displacement 4.73 4.30 4.01 R-Value Uncorrected 40 66 77 R-Value Corrected 44 69 77 Dry Density, pcf 127.0 130.0 131.7 DESIGN CALCULATION DATA Traffic Index Assumed: 4.0 4.0 4.0 G.E. by Stability 0.57 0.32 0.24 G. E. by Expansion 0.30 0.47 0.80 **Examined & Checked:** 63 3 /1/ 13 Equilibrium R-Value by **EXUDATION** Gf = 1.250.0% Retained on the REMARKS: 3/4" Sieve. OF CALLEGARY RCE 30659 The data above is based upon processing and testing samples as received from the

LaBelle • Marvin

field. Test procedures in accordance with latest revisions to Department of Transportation, State of California, Materials & Research Test Method No. 301.

R-VALUE GRAPHICAL PRESENTATION

DATE 3-1-13 TRAFFIC INDEX 19914 4 C	
R-VALUE BY EXPANSION 63	7.0 8.0 9.0 **MOISTURE AT FABRICATION
22	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1.0 2.0 3.0 4.0	7.0 8.0 9.0
R-VALUE vs. EXUD. PRESEXUD. T vs. EXPAN. T	T by EXUDATION T by EXPANSION
	GF=1.25

RECEIVED

MAR 13 2013

GOLDER ASSOCIATES INC. IRVINE, CALIFORNIA

March 11, 2013

Golder Associates Inc. 230 Commerce, Suite 200 Irvine, CA 92602

Attention: Mr. Jaime Bueno

SUBJECT:

Laboratory Test Results

Golder Project Name: Townscope Sunset

Golder Project No.: 123-92034 HAI Project No.: GLDL-13-003

Dear Mr. Bueno:

Enclosed are the results of the laboratory testing conducted on samples from the above referenced project. The testing was conducted in general accordance with the following test procedures:

Type of Test

Test Procedure

Corrosion Suite

CTM 643, 417, and 422

Attached are: Updated Summary of Laboratory Test Results, and one (1) Corrosion Suite.

We appreciate the opportunity to provide our testing services to Golder Associates Inc. If you have any questions regarding these test results, please contact us.

Sincerely,

HUSHMAND ASSOCIATES, INC.

Jorge Turbay, MS, PE

Senior Project Engineer

SUMMARY OF LABORATORY TEST RESULTS

Cifent: Project Name: Project No.:

Golder Associates Inc. Townscope Sunset 123-92034

HAI Project No: GLDL-13-003 Performed by: JT Date: 3/11/2013

	Resistivity	(ohm-cm)	18,330			326					ere per				
slon	Chlorides	(mdd)	2.7												
Corrosion	Sulfates	(%) by weight	0.00083												
	Su	(wdd)	8.3												
		¥	8.0												
		\$ 200	11.7	12	10.6	25.0	8.8	11.1	5.4	7.4	12.0	25.6	6.5	11.1	23.1
		# 100	17.5	29.4	17.0	32.5	10.6	18.8	9.4	11.8	18.1	37.4	11.9	16.0	33.2
422)		8	24.1	35.9	25.0	8.04	15.1	26.9	14.9	18.6	25.2	46.7	20.4	21.6	41.7
ASTM D		94	34.5	6.4	38.4	50.2	23.4	37.5	24.6	32.2	37.1	57.6	35.2	29.9	51.9
of Solis Passing)		# 20	51.9	59.4	59.6	64.0	39.5	53.7	42.9	57.6	56.2	71.0	57.3	43.9	63.6
Particle-size Analysis of Solis (ASTM D422) (Percent Passing)		0 #	4.77	79.8	83.8	82.2	64.5	77.4	73.8	86.7	82.0	87.6	82.7	67.7	80.0
le-size /		#	92.6	95.1	97.5	96.2	82.8	95.9	94.6	99.0	97.5	98.5	98.2	93.2	95.7
Partik		E	96.8	99.4	100.0	1.08	89.2	98.6	98.2	100.0	100.0	266	39.5	98.3	98.6
		25	98.5	100.0		100.0	100.0	100.0	100.0			100.0	100.0	599.3	100.0
		112"	100.0											100.0	
	R Value	(GTM 304)		71					*					ಜ	
Proctor D1657)		Dry Density (pcf)		136.0										134.1	
Modified (ASTM D	Орфии	Moisture Content (%)		7.8										7.0	
	In-estitu Ory				117.3	124.1			111.8				109.2		
	In-situ Moisture	Content (%)			5.4	10.2			3.7				4.0		
	Depth	Salifficients a	11.5-15	26.5-30	30	40	Ŋ	153	30	40	10	15	20	21.5-25	40
	Sample	ģ	Bulk 1	Bulk 2	MC-1	MC-2	S-1	8-5	MC-1	S-7	S-2	8.3	MC-1	Bulk 1	S-7
	Boring	ĝ		0				100	70			B-103		407	-

HAN HUSHMAND ASSOCIATES INC. Controlled and Enthquake Engineer

www.hdrinc.com

Corrosion Control and Condition Assessment (C3A) Department

Table 1 - Laboratory Tests on Soil Samples

Hushmand Associates, Inc. Townscope Sunset Your #GLDL-13-003, HDR|Schiff #13-0167LAB 28-Feb-13

8.	1000	-1		T	n
32	m	DI	æ	II.	IJ

]	B	101
(a)	1	1.5		15'

			(g) 11.5 · 15
Resistivity as-received minimum		Units ohm-cm ohm-cm	60,000 18,330
pН			8.0
Electrical			
Conductivity		mS/cm	0.03
Chemical Analys	es		
Cations			
calcium	Ca ²⁺	mg/kg	16
magnesium	Mg^{2+}	mg/kg	4.2
sodium	Na ^{l+}	mg/kg	32
potassium	K1+	mg/kg	3.1
Anions			
carbonate	CO ₃ ² ·	mg/kg	ND
bicarbonate	HCO ₃	mg/kg	70
fluoride	F^{1-}	mg/kg	1.0
chloride	Cl1-	mg/kg	2.7
sulfate	SO ₄ ²⁻	mg/kg	8.3
phosphate	PO ₄ ³ -	mg/kg	4.0
Other Tests			
ammonium	NH ₄ 16	mg/kg	ND
nitrate	NO ₃ 1.	mg/kg	1.3
sulfide	S2-	qual	па
Redox		mV	na

Minimum resistivity per CTM 643, Chlorides per CTM 422, Sulfates per CTM 417

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

Redox = oxidation-reduction potential in millivolts

ND = not detected

na = not analyzed

August 10, 2015 Golder Project No.: 123-92034

John Irwin AG SCH 8150 Sunset Boulevard Owner, L.P. P.O. Box 10506 Beverly Hills, California 90213

RE: ADDENDUM NO. 1 TO MAY 18, 2015 GEOTECHNICAL REPORT PROPOSED RESIDENTIAL AND COMMERCIAL DEVELOPMENT 8150 SUNSET BOULEVARD, LOS ANGELES, CALIFORNIA

Dear Mr. Irwin:

Golder Associates Inc. (Golder) is submitting this letter report that serves as Addendum No. 1 to the following geotechnical report that we prepared for proposed residential and commercial development at 8150 Sunset Boulevard in Los Angeles, California (the site):

"Geotechnical Exploration and Recommendations Report, Proposed Residential and Commercial Development, 8150 Sunset Blvd., Los Angeles, California," dated May 18, 2015 (referred to as "Golder's Geotechnical Report" herein).

Specifically, this addendum report addresses the following three items:

- 1. Inclusion of a reinforced foundation zone in the northwest corner of the site.
- 2. Results of direct shear tests performed on representative soil samples from the site.
- 3. Geotechnical recommendations for shoring systems.

The remainder of this letter discusses the above-listed items.

REINFORCED FOUNDATION ZONE

Golder's fault hazard study for the site (Golder, 2015¹) established that the main trace of the Hollywood Fault is located northwest of boring B-106 and cone penetration test (CPT) sounding CPT-14 (see Figure 1 to this letter). However, Golder's fault rupture investigation was unable to extent 50 feet beyond the site's boundary because of access and traffic restrictions on Sunset Boulevard. While the State of California Alquist-Priolo map shows the main trace of the Hollywood Fault more than 100 feet northwest of the site's northwest corner (see Figure 1 to this letter), our investigation was unable to unequivocally establish that the main Hollywood Fault trace is more than 50 feet from the northwest corner of the site. Therefore, in accordance with City of Los Angeles policy, Golder recommends that a 50-foot wide reinforced foundation zone be established in the northwest corner of the site as shown on Figure 1 to this letter (Figure 1 also shows the location of the main trace of the Hollywood Fault, the extents of the Alquist-Priolo Earthquake Fault Zone, CPT and boring locations, and the approximate limits of the proposed basement excavation and building development).

¹ Golder Associates Inc., "Surface Fault Rupture Hazard Assessment, Proposed Residential and Commercial Development, 8150 Sunset Boulevard, City of Los Angeles, California," dated May 18, 2015

The reinforced foundation zone does not contain the main trace of the Hollywood Fault, but could be subject to secondary surface fault rupture or off-fault displacements. Golder recommends that structures located within the reinforced foundation zone in the northwest corner of the site be designed for a 10-inch horizontal ground displacement and a 2-inch vertical ground displacement. These recommended ground displacement values are the same as those recommended by GeoPentech for a site located at 1840 Highland Avenue in Los Angeles (the Highland Site), which is on or adjacent to the active trace of the Hollywood Fault about 1.8 miles east-northeast of the 8150 Sunset Boulevard site. We consider that the adoption of a 10-inch horizontal ground displacement and a 2-inch vertical ground displacement for the design of foundations in the reinforced foundation zone is sufficiently conservative for the 8150 Sunset Boulevard site because:

- Neither the main trace nor secondary traces of the Hollywood Fault have been identified on the 8150 Sunset Boulevard site, unlike the Highland Site where active fault traces were identified.
- The reinforced foundation zone has been included for the 8150 Sunset Boulevard site only because it has not been possible to unequivocally prove that the main trace of the Hollywood Fault is more than 50 feet from this site's northwest corner, and not because structures are being placed adjacent to known traces of the Hollywood Fault such as at the Highland Site.
- Probabilistic fault displacement hazard analysis (PFDHA), an analysis technique that is increasingly being used to evaluate the risk of surface displacements at sites on or adjacent to Holocene-active faults, indicates that little or no ground displacement can be expected in the reinforced foundation zone at 8150 Sunset Boulevard in the next 2,475 years, which is the basis of the Maximum Considered Earthquake for ground shaking in the City of Los Angeles Building Code.

DIRECT SHEAR TEST RESULTS

In July 2015, Golder had three representative soil samples from the site direct shear tested in accordance with ASTM D3080. The direct shear tests were performed by Hushmand Associates, Inc.'s (HAI) geotechnical testing laboratory under the direction of Golder. The direct shear tests were performed on the following samples that were collected during Golder's previous field work at the site (as described in Golder's Geotechnical Report):

- Bulk sample 1 from boring B-102A (depth = 30 to 35 feet below ground surface)
- Core sample from boring B-105 (depth = 14 to 15 feet below ground surface)
- Core sample from boring B-106 (depth = 30 to 31 feet below ground surface)

The above-listed samples were selected for direct shear testing as they are considered to be representative and provide an appropriate areal and elevation coverage across the site. Three-point, consolidated-drained direct shear testing was performed on remolded and saturated test specimens from each of the above-listed samples. Remolding of the test specimens was necessary since the samples were disturbed bulk and core samples. The measured in-situ dry density and moisture content of previously tested samples from the site ranged from 109.2 to 124.1 pounds per cubic foot (pcf) and 3.7 to 10.2 percent, respectively, as shown in Appendix C of Golder's Geotechnical Report. Therefore, Golder instructed the laboratory to remold each direct shear test specimen to a dry density of 110 pcf at a moisture content of 5 percent. Remolding the direct shear test specimens to a dry density (110 pcf) that is approximately equal to the lowest measured in-situ dry density (109.2 pcf) yielded conservative results as the shear strengths measured in the direct shear tests would increase if the samples were remolded to a higher dry density. The direct shear tests were performed at effective normal stresses of 1, 5, and 10 ksf, which are considered to bound the range of normal stresses that will be present beneath the proposed foundations and behind the retaining walls and shoring system(s). The laboratory direct shear test results are presented in Attachment A to this letter. Golder has reviewed the laboratory direct shear

data provided by HAI and concurs with the results. As such, Golder accepts responsibility for use of the laboratory direct shear data presented in Attachment A to this letter.

Figure 2 to this letter presents a summary plot of shear stress at failure (i.e., shear stress at the end of the direct shear tests) versus normal stress for each of the three sets of direct shear tests. Figure 2 also shows a conservative best-fit linear failure envelope for the direct shear test data, with the cohesion intercept set at zero (which is appropriate for the granular soils at the site). As can be seen on Figure 2, the conservative best-fit linear failure envelope for the direct shear test data corresponds to a friction angle of 32 degrees (with a cohesion intercept of zero). As described in Section 4.4 of Golder's Geotechnical Report, a friction angle of 32 degrees (with zero cohesion) was assigned to the subsurface soils at the site based on the results of standard penetration test (SPT) and CPT results. Based on the direct shear laboratory test results described above and summarized on Figure 2, use of a friction angle of 32 degrees for the site's soils is justified.

SHORING RECOMMENDATIONS

Excavation and shoring is a major part of the proposed project and will need to be carefully evaluated once the final design of the proposed development is complete. We understand that the shoring system will be designed by the contractor. Issues that will have to be addressed by the contractor include:

- Surcharge on the proposed shoring system from existing structures.
- Anticipated movements of the shoring system and their effect on nearby structures.

The shoring designer should develop a system that satisfies the requirements and reflects the actual loading conditions of the proposed buildings and structures at the site. Golder is providing the information and recommendations below to aid in this process. The shoring designer will be responsible for analyzing the shoring system(s) to demonstrate that the shoring has an acceptable factor of safety (i.e., a factor of safety greater than or equal to 1.3) against failure.

Because of the depth of the proposed excavations and the space limitations, excavation shoring will be required at the site. Depending on the final depth of excavation and the presence of adjacent surface and/or underground structures, shoring may consist of cantilever soldier pile and lagging walls, tied-back soldier pile and lagging walls, internally braced soldier pile and lagging walls, secant or tangent pile walls, or a combination of these systems. Where control of excavation-induced ground movements is critical, the use of secant and/or tangent pile walls may be considered because of the greater lateral stiffness of these systems. The lateral stiffness of soldier pile and lagging walls can be increased by adjusting the horizontal spacing of the soldier piles, the vertical spacing of the supports, and the support pre-load.

Lateral Pressures for Shoring Design

- Cantilever-type shoring systems should be designed to resist lateral earth pressures calculated as those from an equivalent fluid weighing 39 pcf.
- Tied-back or internally-braced shoring systems should be designed using the apparent earth pressure distribution presented in Figure 3.
- Soldier piles can be designed using the apparent earth pressure distribution presented in Figure 3.
- A vertical surcharge load of 250 psf should be applied to the ground surface immediately behind the shoring system to represent construction and street traffic in accordance with Figure 4.
- Surcharge loading from adjacent building foundations should be applied in accordance with Figure 4.
- An allowable passive earth pressure of 200 psf per foot of depth below the bottom of the excavation should be used for design of the shoring system. The allowable passive

pressure can be assumed to act over two times the concreted pile diameter or the pile spacing, whichever is less. For piles spaced closer than three diameters, a reduction in the allowable passive earth pressure may be necessary. Golder recommends that the upper 1 foot below the bottom of the excavation be neglected in the passive resistance calculations. The passive pressure should not exceed 4,000 psf.

The shoring recommendations presented above are for level ground behind the shoring system. It is also assumed that no material or equipment will be stockpiled within a distance of one times the excavation depth behind the wall. The shoring walls should be designed for additional lateral pressures if these assumptions are not met.

We have assumed that the majority of the site will be braced by tiebacks (i.e., ground anchors). Ground anchors provide open excavations that will simplify below-grade construction. Due to the proximity of adjacent properties and foundations for existing structures, it may be necessary to use rakers or horizontal struts as internal bracing for lateral support of excavation shoring systems in certain areas of the site. However, several factors must be considered when evaluating the use of ground anchors, including the proximity to foundation systems of adjacent buildings and temporary construction easement requirements. If a mixed system of struts and ground anchors is used for excavation support, the differing stiffness, response to thermal changes, and general behavior of the two types of systems must be considered in the design and construction so that the loads are shared between the two systems as intended.

Figure 3 shows the apparent earth pressure distribution that is recommended for shoring design. The recommended uniform apparent pressure distribution for sandy soils conforms to the standard practice in geotechnical engineering based upon measured strut loads in deep excavations. The cantilever portion of the wall down to the depth excavated to install the first brace/ground anchor should be checked separately using an equivalent fluid pressure of 39 pcf.

The considerations above apply only to forces in the wall supports and stresses in the soldier piles. Excavation induced wall movements are a separate issue. Movement of shoring walls are a function of many factors including the soil and groundwater conditions, changes in groundwater level, the depth and shape of the excavation, type and stiffness of the wall and its supports, methods of construction of the wall and adjacent facilities, surcharge loads, and the duration of wall exposure among others. Reported typical horizontal wall movements in sandy soils tend to average about 0.2% of the wall height for walls with good workmanship. The range of possible horizontal wall movements is approximately 0.5 inches to 2.5 inches. Reported typical vertical movements behind walls in sandy soils tend to average about 0.15% of the wall height for walls with good workmanship. The range of possible vertical movements behind the walls is approximately 0.5 inches to 2 inches. A reduction in the stiffness of the wall system (soldier pile and supports) could result in an increase in wall movements. The actual wall movement and settlement could exceed the values shown above in the case of soldier beam and ground anchors. With this system, the wall movement and settlement can be affected by the location of the first row of anchors (the cantilever height), the spacing of the soldier beams, and the effectiveness of the lagging (including workmanship) to minimize ground loss.

The anticipated ground movements at the adjacent structures should be checked by the contractor. If the movement criteria for an adjacent structure cannot be met by the shoring design, then the structure should be underpinned prior to excavation.

It is noted that, in an urban environment, it is possible that previously undetected fills and underground structures and utilities may be encountered once excavation begins. The excavation should be conducted under the observation of a Golder representative. Observing the soil conditions during excavation is very important so that the shoring design may be re-evaluated as soon as conditions differing from those assumed during the design are encountered to avoid delay or shoring failure.

Soldier Pile and Ground Anchor Design

If ground anchors (tiebacks) are installed, the soldier piles should be designed to have adequate vertical capacity to resist the vertical components of the ground anchor loads, and permanent structural loads if required.

For vertical loads on soldier piles spaced at least 2.5 pile diameters center-to-center, the following design criteria are recommended:

- A minimum pile embedment of 10 feet below the base of the excavation.
- Allowable end bearing resistance of 10 ksf.
- Allowable side friction of 0.4 ksf per foot below the bottom of the excavation, neglecting the upper one foot of embedment.

The embedment depth of the soldier piles below the base of the excavation should be designed to provide adequate lateral resistance below the lowest ground anchor.

The anchor portion of the tieback should be located sufficiently far behind the excavation shoring to stabilize the excavation face. The "no load" zone limits are defined by a horizontal distance equal to 25 percent of the excavation height rising at an angle of 60 degrees from horizontal starting from the base of the excavation.

The selection of tieback materials and the installation methods should be the responsibility of the contractor. The actual adhesion values will depend on the materials and installation methods. The adhesion values should be confirmed in the field by testing.

For non-pressure grouted anchors, an allowable design concrete/soil adhesion of 8 pounds per square inch (psi) is estimated for preliminary design. This value should be confirmed in the field by testing during construction.

A minimum anchor spacing of 4 feet center-to-center is recommended. Anchor holes should be drilled at an angle between 20 to 30 degrees down from horizontal. A minimum anchor bond zone of 10 feet is recommended. A minimum drill hole diameter of 6 inches is also recommended. The presence of manmade features such as existing utilities and foundations should be checked and located during the design as these may affect the locations of the tiebacks.

Shoring Monitoring and Instrumentation

Vertical and lateral movement of the ground and structures surrounding the shored excavation is recommended. Even with well-designed shoring systems there is a risk of greater-than-expected movements and possible damage to adjacent structures. Survey points should be established on the top of every third pile. Pile monitoring is to include both horizontal and vertical measurements. Several survey monitoring points (and possibly crack gauges) should be established on adjacent structures. In particular, monitoring is required to ensure that lateral movements on adjacent structures do not exceed 0.05% of the height from the structure to the base of the excavation. Monitoring points should also be established on the sidewalks and/or pavements surrounding the site. The survey monitoring should be accurate to at least 0.01 feet for both horizontal and vertical measurements.

In order to establish the baseline condition of the adjacent facilities prior to construction, a complete inspection and evaluation of the pavements, buildings, structures, and utilities near the perimeter of the excavation should be performed. Existing signs of damage should be thoroughly documented prior to construction. This documentation can include photographs, notes, survey, drawings, or video. A video survey of the utilities adjacent to the construction should also be considered.

GEOLOGIST

OF CAL

CLOSING

We appreciate the opportunity to support AG SCH 8150 Sunset Boulevard Owner, L.P. on this important project. If you have any questions or require additional information, please contact either of the undersigned.

Sincerely,

GOLDER ASSOCIATES INC.

Ryan Hillman, P.E. Senior Engineer No. C71988

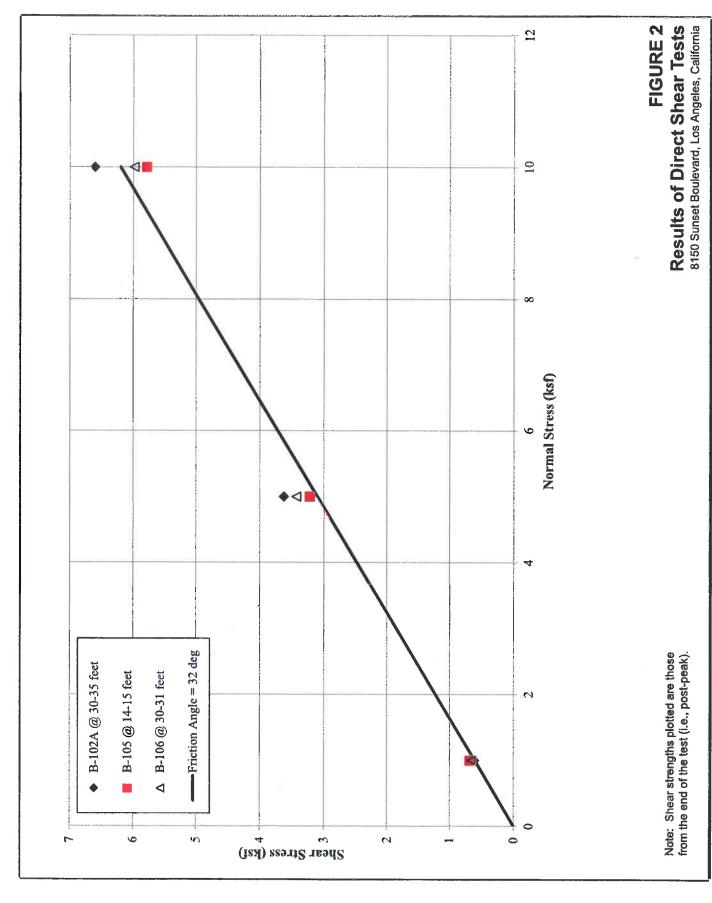
Alan Hull, Ph.D., C.E.G. Principal and Practice Leader

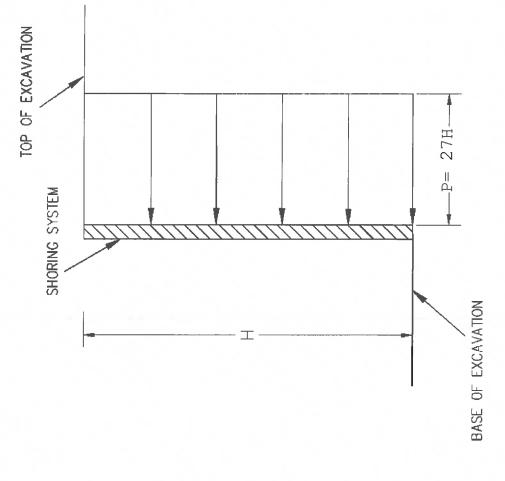
Attachments:

Figure 1 - Map of CPT, Borehole Locations and Reinforced Foundation Zone

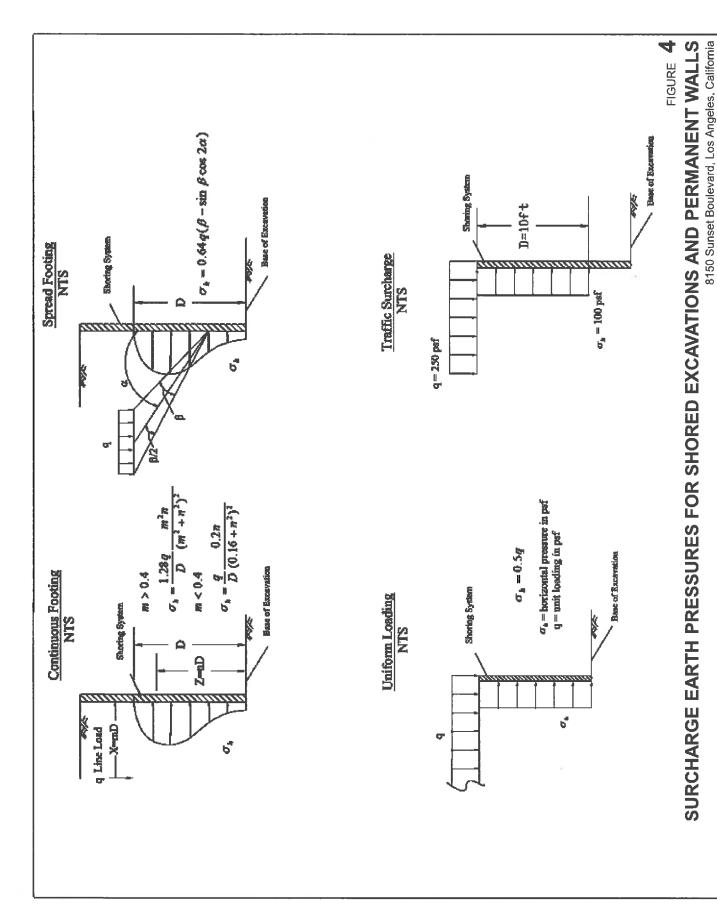
Figure 2 - Results of Direct Shear Tests

Figure 3 – Apparent Earth Pressure Distribution for Braced and Tied-Back Excavations


Figure 4 – Surcharge Earth Pressures for Shored Excavations and Permanent Walls


Attachment A - Direct Shear Laboratory Test Results

W.Projecta1123.Jobs1123-92034 Townscape Sunset189_PROJECTS\Letta-ToCity/02_PRODUCTION/ResponseToComments\Borshole|LocationMap.mxd, 8/5/2015, 03:05 PM by kkavli



excavation in feet P= Apparent earth pressure in H= Height of

pounds per square foot

FIGURE 3 APPARENT EARTH PRESSURE DISTRIBUTION FOR BRACED AND TIED-BACK EXCAVATIONS

8150 Sunset Boulevard, Los Angeles, California

ATTACHMENT A DIRECT SHEAR LABORATORY TEST RESULTS

Hushmand Associates, Inc. 1721 E. Lambert Rd, Ste. B. La Habra, CA 90631

p. (562) 690-3737 **w.** baieng.com **e.** hai@haieng.com

July 30th, 2015

Golder Associates Inc.
3 Corporate Park, Suite 200
Irvine, CA 92602

Attention: Ms. Cynthia Valenzuela

SUBJECT: Laboratory Test Results

Golder Project Name: Townscape Sunset Geotech. Recommendations

Golder Project No.: 12392034-02 HAI Project No.: GLDL-15-008

Dear Ms. Valenzuela:

Enclosed are the results of the laboratory testing conducted on samples for the subject project. The testing was conducted in general accordance with the following test procedures:

Type of Test

Test Procedure

Direct Shear

ASTM D3080

Attached are: three (3) three-point Direct Shear test results on remolded samples.

We appreciate the opportunity to provide our testing services to Golder Associates Inc. If you have any questions regarding these test results, please contact us.

Sincerely,

HUSHMAND ASSOCIATES, INC.

Min Zhang, PhD, PE

Project Engineer

Golder Associates Inc. Client:

Project Name: Townscape Sunset Geotechnical Recommendations Project Number: 12392034-02

B-102A Boring No.:

Bulk 1 Sample No.: 30-35 Depth (ft): Soil description: Dark Yellowish Brown, Silty Sand (SM)

Remolded to 110 pcf @ 5% Sample type:

Consolidated, Drained Type of test:

	◀	*	•
Normal Stress (ksf)	1	20	10
Deformation Rate (in/min)		0.002	

Peak Shear Stress (ksf)	0.62	3.62	6.64	
Shear stress @ end of test (ksf)	0.61	3.62	6.60	
			:	
Initial height of sample (in)	1	1	1	
Height of sample before shear (in)	0.9817	0.9544	0.9268	
Diameter of sample (in)	2.42	2.42	2.42	
Initial Moisture Content (%)	5.0	5.0	5.0	
Final Moisture Content (%)	13.4	11.7	11.0	

110.0 72.2

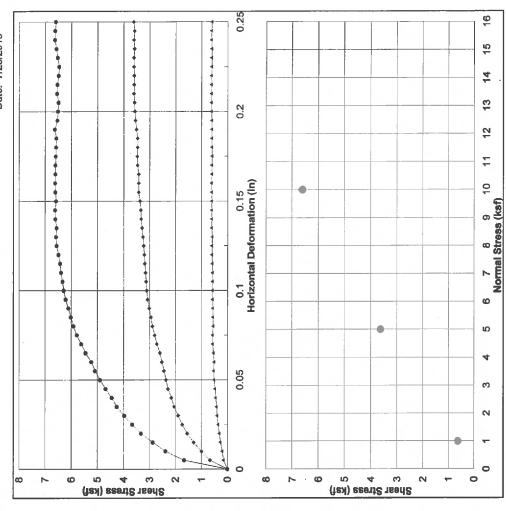
110.0

110.0

69.4

72.7

Final Saturation (%) Dry Density (pcf)


DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: GLDL-15-008

Tested by: SE/KL Checked by: MZ

Date: 7/28/2015

Client: Golder Associates Inc.

Project Name: Townscape Sunset Geotechnical Recommendations

Project Number: 12392034-02

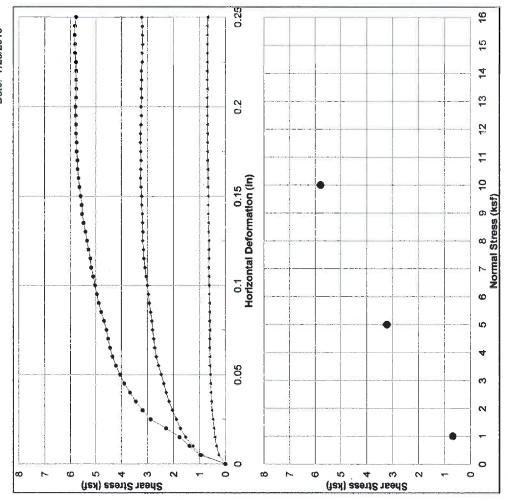
B-105 Boring No.:

Core Sample No.: 14-15' Depth (ft): Soil description: Dark Yellowish Brown, Silty Sand (SM)

Remolded to 110 pcf @ 5% Sample type:

Consolidated, Drained Type of test:

	•		
Normal Stress (ksf)	1	2	10
Deformation Rate (in/min)		0.002	


Peak Shear Stress (ksf)	•	0.70	3,26	5.83
Shear stress @ end of test (ksf)	•	0.68	3.22	82.5
Initial height of sample (in)		1	1	1
Height of sample before shear (in)		0.9788	0.9200	6928.0

Initial height of sample (in)	1	1	-
Height of sample before shear (in)	0.9788	0.9200	0.8769
Diameter of sample (in)	2.42	2.42	2.42
Initial Moisture Content (%)	5.0	5.0	5.0
Final Moisture Content (%)	14.6	12.7	11.8
Dry Density (pcf)	110.0	110.0	110.0
Final Saturation (%)	80.2	85.2	94.6

DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: GLDL-15-008 Tested by: SE/KL Checked by: MZ Date: 7/28/2015

Client: Golder Associates Inc.

Project Name: Townscape Sunset Geotechnical Recommendations

Project Number: 12392034-02

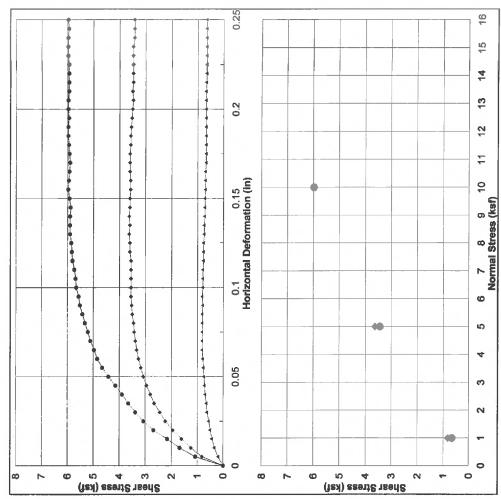
B-106 Boring No.:

Core Sample No.: 30-31 Depth (ft): Soil description: Brown, Poorly Graded Sand with Silt (SP-SM)

Remolded to 110 pcf @ 5% Sample type:

Consolidated, Drained Type of test:

	\	•	•
Normal Stress (ksf)	1	9	10
Deformation Rate (in/min)		0.002	


Peak Shear Stress (ksf)	♦	0.82	3.62	5.98
Shear stress @ end of test (ksf)	•	0.65	3.43	5.98
Initial height of sample (in)		1	1	1
Height of sample before shear (in)		0.9869	0.9595	0.9215
Diameter of sample (in)		2.42	2.42	2.42
Initial Moisture Content (%)		5.0	5.0	5.0
Final Moisture Content (%)		16.0	15.4	14.9
Dry Density (pcf)		110.0	110.0	110.0
Final Saturation (%)		84.2	88.8	97.6

DIRECT SHEAR TEST

(ASTM D3080)

HAI Pr No.: GLDL-15-008 Tested by: SE/KL Checked by: MZ

Date: 7/28/2015

CITY OF LOS ANGELES DEPARTMENT OF BUILDING AND SAFETY Grading Division

District Weres

83343-2 LOG No.

APPLICATION FOR REVIEW OF TECHNICAL REPORTS

INS	TRU	ICT	ION:

A. Address all communications to the Grading Division	, LADBS, 201 N. Figueroa St., 3 rd Fl., Los Angeles, CA 90012
Telephone No. (213)482-0480.	A
B. Submit three copies (four for subdivisions) of repor	ts, one "pdf" copy of the report on a CD-Rom,
and one copy of application with items "1" through	"10" completed.
C. Check should be made to the City of Los Angeles.	
3 LECAL DESCRIPTION	A COOLEGE I DODEGO

C. Check should be made to t	the City of Los	Angeles.	·					
1. LEGAL DESCRIPTION	2. PROJECT ADDRESS:							
Tract: _3 173	8150 SUNSET BOULEVARD							
Block: Lots	4. APPLICANT MICHAEL NYTZEN							
A		et Boulevard	-					
		EL NOOFBARKO	_			ER ST, 26th FLOO	<u></u>	
Address: P.O. Box				LOSANGI	,	Zip: <u>90071</u>		
	ILLS Zip:	90213	_ Pho	one (Daytime)	: (213)68	33-5713		
Phone (Daytime): (310)	285-706	31				12 EN PAULHASTIA	des com	
5. Report(s) Prepared by:	6. Report Date(s): 8 10 2015							
7. Status of project:	☐ Under Construction ☐ Storm Damage							
8. Previous site reports?	YES YES	if ves, give date	(s) of report(s	s) and name o	f company who p	repared report(s)		
GOLDER ASSOCIATE	5-5/18/1	5:10/3/4;	1/27/14			, , , , , , ,		
9. Previous Department action	1	☐ YES	if yes, pr	ovide dates a	nd attach a copy	to expedite processing.		
Dates: 6	29/15: 11	1/21/14			*\	, ,		
10. Applicant Signature:				Position: ALENT				
W		(DEP/	ARTMENT US	ONLY)	1031610111. [34	20101	-	
PENIEW BEOMECTED	1				l //	250		
REVIEW REQUESTED Solis Engineering	FEES	REVIEW REC	JUESTED .	FEES	Fee Due: 65			
Geology	R.	No. of Lots No. of Acres	<u> </u>		Fee Verified By:	Date: 7-3	4/5	
Combined Soils Engr. & Geol.		Division of Land		 	-	(Cashier Use Only)		
Supplemental Other					LA Denortue	nt of Building and	Safety	
☐ Combined Supplemental Expedite					LA ERIC 102064275 8/25/2015 8:54:22 AM			
☐ Import-Export Route	port Route Sponse to Correct		on 30		-	s	8	
Cubic Yards:		☐ Expedite ONLY	1	18	GRADING REE		\$363.00	
			Sub-total	54	SYSTEMS DEV		\$21.7° \$18.1°	
• a		One-Stop Surcharg		1/4	In plan maint surch		\$7.E	
ACTION BY:			TOTAL FEE	6528	CITY PLAN S		\$21.7	
THE REPORT IS:			plan approv	AL PEE	\$181.5			
0					Systems Dev		\$10.89	
☐ APPROVED WITH CONDITIONS		□ BELOW	□ A11	TACHED	GEN PLAN MA ONE STOP SU		\$9.00 \$3.60	
					CITY PLAN S		\$10.8	
For Ge	+	Date	MINCELLANEC	**	\$3.0.0			
r. r	*-11-							
For S	'	Date			sissers and third fidulities and and			
					85	Sub Total:	\$657.91	
					Receipt #:	0102493220		
<u>. 193</u>					the protection processed Buy page 1850, in	4 at one is not one tree man pa.		
- a								
								